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I N T R O D U C T I O N

The sciences, economies and societies are currently experiencing paradigm shift(s) due to
the unprecedented availability of complex data, ever growing amounts of computing power,
and substantial advances in machine learning. In this context, a cross-disciplinary viewpoint
based on the mathematics of complex systems emerges. In complex systems, a large number
of relatively simple elements interact via the network of interactions. However, the collective
emerging behavior cannot easily be inferred from that of the few individual components.

What are the emerging patterns in complex systems? How do they come about from the
behavior of the elements? These are typical questions in the sciences, economy and policy
making. These questions immediately lead to severe mathematical problems about the models
of complex systems but also about their relationships with the real data.

In this thesis, we focus on several paradigmatic stochastic models of complex systems. We
analyse the emergent collective behavior in inhomogeneous complex systems on multiple
scales of observation, study critical phenomena, fluctuations, and attempt to explore the
universality classes of these models. A common theme is the emergence of random hierarchical
structures which describe the multi-scale behavior of the systems. Our ultimate goal is to
provide fundamental and rigorous mathematical underpinnings to these phenomena.

We focus on two modeling frameworks:

• Energy-based. In this framework, inhomogeneous interacting components of a complex
system induce a rugged energy landscape in which the system tries to relax to an equilibrium.
However, the ruggedness (i.e., abundance of local extrema) can make the simple local
search for an equilibrium an extremely long endeavor. This leads to important phenomena
like phase transitions, ergodicity breaking, emergence of multi-scale hierarchies. While
the parlance and the modeling framework originates in statistical physics (see, e.g.,
Bovier [43], Kadanoff [125], Ruelle [173], and Sethna [180]), it has long transcended
its original realm and became important in the sciences in general Mézard et al. [151],
e.g., computer science (see, e.g., Engel & van den Broeck [83], Mézard & Montanari
[149], Opper & Saad [162], and Zdeborová & Krzakala [192]) and life sciences, see, e.g.,
(Gavrilets [97] and Kauffman [126]). It is thus not surprising that the energy-based
models attracted substantial attention in the mathematics literature (e.g., Bovier [43],
Kistler [127], Newman & Stein [157], Panchenko [164], and Talagrand [185]). Yet, despite
recent spectacular advances, rigorous understanding of these phenomena remains rather
limited.

• Information-based. A large class of complex systems can be modeled by a “population”
of particles (also called “agents”, depending on the context) “living” on the nodes of a
network. As time progresses, the particles interact with each other by influencing each
other’s state (and possibly the underlying network itself) at given rates. A state represents
some properties of the particle, which are of interest, e.g., an opinion or an infection
status of an agent. In this setup, the dynamics of the system can be seen as exchange of
information between the particles (e.g., Aldous [3] and Dawson [66]). Such interacting
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particle systems (IPS) is a key object of study in probability theory (see, e.g., Dawson &
Greven [69], Del Moral [70], and Liggett [141]) and in the sciences (e.g., Barrat et al. [20],
Epstein [84], Goldstone & Janssen [99], Holland [108], Nowak [159], and Porter & Gleeson
[170]), where they are known under various names such as agent-based models. A key
challenge is to understand the aggregate space-time behavior emerging in these systems.

multi-scale analysis and emergence of hierarchies. Complex systems display emer-
gent behavior upon increasing the scale of observation (see, e.g., Badii & Politi [16] for an
introduction). A key method to analyze the structural (spatial) and dynamical aggregate behav-
ior of stochastic models of complex systems is multi-scale analysis. Here, one considers the
so-called mesoscopic observation scales, which lie between the micro and the macro ones. This
allows to gradually pass from the microscopic to the macroscopic scale by going to increasingly
larger mesoscopic scales one scale at a time.

In this thesis, the multi-scale analysis has the following two incarnations:

• For energy-based models, the multi-scale spatial structure of the systems can be dis-
covered by tuning, e.g., the so-called (inverse) temperature. The conjectured picture is
roughly the following. The smaller the temperature, the smaller the essential patches of
the configuration space on which the system concentrates. Vice versa, by increasing the
temperature, the essential patches coalesce into larger essential patches. This way, by
varying the temperature, the whole hierarchy of the essential patches (also called pure
states) emerges.1

• A key approach to understand universality and to study the emergent spatio-temporal
patterns in the behavior of interacting systems is renormalization analysis, e.g., Greven
[100] and Kadanoff [125]. Here, mesoscopic observables are analyzed on an increasing
sequence of observation scales. In an ideal situation, this analysis results in a renormaliza-
tion mapping between the emergent patterns on two consecutive scales of observation. In
this case, by iterating the renormalization mappings, one obtains the orbit of patterns
emerging in the increasing sequence of scales of observation. The universality classes can
then be associated with the attractors of such orbits.

inhomogeneities. In this thesis, there is an additional explicit source of multi-scale be-
havior in the models we focus on: the presence of the inhomogeneous background, which
is modeled by a random environment. The models which we consider have at least two a
priori scales: slow degrees of freedom (representing the inhomogeneous background/random
environment), and the fast degrees of freedom (representing the foreground).

original publications. This habilitation thesis is based on the following original publica-
tions:

1a. A. Klimovsky. Towards renormalisation of the hierarchically interacting heavy-tailed
Lambda-Cannings models. In: The Renormalization Group (Eds. M. Disertori, J. Feldman
and M. Salmhofer), Oberwolfach Reports, 8 (1), 2011.

1 This picture is supposed to have profound implications on the dynamics in energy based models. In particular,
dynamics in rugged landscapes displays rich features: the epochs of (transient) stasis are punctuated by “paradigm
shifts”. We do not pursue dynamics questions for energy-based models in this thesis.



2a. A. Klimovsky. High-dimensional Gaussian fields with isotropic increments seen through
spin glasses. Electron. Commun. Probab., 17, 1–14, 2012.

3a. A. Greven, F. den Hollander, S. Kliem, A. Klimovsky. Renormalisation of hierarchically
interacting Lambda-Cannings processes. ALEA Lat. Am. J. Probab. Math. Stat., 11 (1),
43–140, 2014.

4a. Z. Kabluchko and A. Klimovsky. Complex random energy model: Zeros and fluctuations.
Prob. Theor. and Rel. Fields, 158, 159–196, 2014.

5a. L. Hartung, A. Klimovsky. The glassy phase of the complex branching Brownian motion
energy model. Electron. Commun. Probab. 20 (78), 2015.

6a. L. Hartung, A. Klimovsky. The phase diagram of the complex temperature branching
Brownian motion energy model. Electron. J. Probab. 23 (127), 2018.

7a. A. Greven, F. den Hollander, A. Klimovsky. The hierarchical Cannings process in random
environment. ALEA Lat. Am. J. Probab. Math. Stat., 15, 295–351, 2018.

8a. J. Černý, A. Klimovsky. Markovian dynamics of exchangeable arrays. In: Genealogies
of Interacting Particle Systems (Eds. M. Birkner, R. Sun, J. Swart), Lecture Notes Series,
Institute for Mathematical Sciences, National University of Singapore, Volume 38, World
Scientific, 2020.

9a. Z. Kabluchko and A. Klimovsky. Generalized random energy model at complex tempera-
tures. Submitted, 109 pp., 2019. Available at http://arxiv.org/abs/1402.2142

organization. In this thesis, we present the main results from the above listed original
publications. We mostly do not include the proofs. However, we try to give some heuristic
explanations/hints on why the results are plausible. Furthermore, we provide additional
context, relationships, extensions, open problems and possible avenues for future research.

The remainder of the thesis is organized as follows:

• Part I is devoted to energy-based models of disordered systems. Informally, a disor-
dered system is a complex system with configurations/states “living” on (at least) two
levels/scales: the “background” (or slow) level – representing the state of the inhomo-
geneous (disordered) background environment, and the “foreground” (or fast) level –
representing the state of the system given the state of the background. There are two
components to an energy based model – a state space and an energy function on this state
space. In disordered systems, the energy function is moreover a stochastic process, which
models the inhomogeneous background. Each realization of the stochastic process gives
the state of the background.

The first part contains four chapters. We focus on four energy based models with
increasingly more complicated stochastic processes of energies:

– Chapter 1 focuses on the random energy model (REM). The REM is probably the
simplest but arguably paradigmatic model of an energy-based disordered system,
which displays a phase transition. The energy process in this model is a white noise
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and the state space is a finite set without any additional structure. While the original
model is well understood, our main contribution is the analysis of a complex-valued
extension of the model. The motivation for the complex-valued setup is multi-fold:
(1) the Lee-Yang theory of phase-transitions which identifies phase transitions with
the accumulation points of the complex-plane zeros of the partition function; (2)
quantum physics and interference phenomena; (3) important mathematics objects such
as the Riemann zeta function, characteristic polynomials of large random matrices and
distributions of their zeros. For the complex-valued REM, we identify the stochastic
fluctuations of the partition function, derive the phase diagram and study the
distribution of complex plane zeros of the so-called partition function. The value
of this model is not only pedagogical. It comes with a universality class and has
features, which are shared with much more complicated models, some of which can
be witnessed in Chapters 2, 3 and 4.

This chapter is based on publication 4a.

– Chapter 2 is devoted to the analysis of the the generalized random energy model
(GREM) at complex temperatures. This model is an successful and arguably informa-
tive attempt to go beyond the REM universality class. In this model, the stochastic
process of energies is a strongly correlated Gaussian process with correlations given
by a (function of) the genealogical distance on the deterministic tree with a fixed depth
but of growing breadth. This tree structure induces multi-scale stochastic fluctuations
and produces a rich phase diagram, which hopefully sheds some light on the com-
plex plane phase diagrams of models with more complicated energy processes. As
with the complex-valued REM, the crucial step is the analysis of the fluctuations
of the partition function. This allows for detailed results on the distribution and
fluctuations of the zeros of the partition function.

This chapter is based on publication 9a.

– Chapter 3 provides the phase diagram and fluctuations in the complex branching
Brownian motion (BBM) energy model. Branching Brownian motion plays the rôle
of the energy process in this model. Due to the its branching structure, as GREM,
BBM has correlations given by the genealogical distance on a tree. However, the
underlying tree is given by a Galton-Watson tree, which is a random tree of growing
depth and breadth. It turns out that this model lies exactly at the borderline of the
REM universality class. It has the same complex plane phase diagram as the complex
REM but the stochastic fluctuations are different from those of the REM due to the
strong correlations of the energy process.

This chapter is based on publications 5a., 6a.

– Chapter 4 studies rather generic high-dimensional Gaussian fields with isotropic
increments playing the rôle of the energy function. We study the phase diagram of
this model without directly resorting to the analysis of its fluctuations, as it was done
in Chapters 1-3. We use very different methods from those of the first three chapters.
Our methods rely on: (1) the perturbative analysis of the model (so-called Aizenman-
Sims-Starr scheme); (2) comparison with suitably chosen scaling limits of the GREM
(so-called Ruelle’s probability cascades); (3) stochastic symmetries (exchangeability,
Ghirlanda-Guerra identities and Panchenko’s proof of ultrametricity).



This chapter is based on publication 2a.

• Part II is devoted to information-based models. We consider space-time models with
Markovian dynamics on high-dimensional state spaces. Specifically, we focus on inter-
acting particle systems on networks. The main challenge is to identify the aggregate
behavior emerging in these systems.

This part contains two chapters:

– Chapter 5 introduces and studies the spatial Cannings model in random envi-
ronment. This is an extension of a central stochastic model for multi-type popu-
lation dynamics called the Cannings model. We consider an evolving population
of multi-type particles in a hierarchically structured geographical space subject
to the following dynamics: reproduction under constrained amount of resources
(resampling), non-local catastrophes (correlated updates affecting the whole blocks
of the geographical space) and migration of individuals in the geographical space. In
this model, somewhat similarly to Part I, the mechanisms of reproduction and that
of catastrophes are assumed to be inhomogeneous across the geographical space. The
inhomogeneities and are modeled by a random environment. To model the evolution
of a multi-type population, we use the framework of measure-valued Markov processes.
In this framework, the measures represent the empirical distribution of types at
given spatial location. To study the large space-time scale behavior of the model, we
employ the methods of: (1) multi-scale analysis/renormalization group ideas; (2)
duality methods from the theory of interacting particle systems, which relate the
behavior of IPS with the behavior of simpler stochastic processes.

This chapter is based on publications 1a., 3a., 7a.

– Chapter 6 introduces and studies a model of evolving networks. This model is
one of the first steps towards studying large-scale stochastic limiting objects in
interacting particle systems on evolving networks. This is an emerging research topic in
probability theory and statistics with a plethora of applications in the sciences. We
study how some popular assumptions like Markovian evolution, vertex exchangeability
and subsampling consistency imposed on a large weighted graph play together. In the
large network limit, we study the limiting object for such networks. This object can
be seen as a Markovian dynamics of exchangeable two-dimensional arrays. We classify
the possible jumps of such dynamics. At a jump time, one of the tree transitions
occurs: “microscopic” (a single entry in the array jumps); “mesoscopic” (a proportion
of a row/column elements jumps); or “macroscopic” (a proportion of the whole
two dimensional array jumps). We answer the question “Are the subsamples of
an exchangeable Markov array also Markov?” in the negative and provide a coun-
terexample. This is because there can exist non-local exchangeable quantities in the
Markovian array. We show, however, that under additional continuity assumptions
on the Markov semigroup (the so-called Feller property), any subsample of a Feller
exchangeable array is indeed Markov.

This chapter is based on publication 8a.
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Part I

E N E R GY- B A S E D M O D E L S





1 C O M P L E X R A N D O M E N E R GY M O D E L

What causes phase transitions in energy based disordered
systems? How do they come about?
Motivated by these questions, but also by quantum physics,
interference phenomena and by mathematical objects such
as the Riemann zeta-function and characteristic polyno-
mials of large random matrices, we consider the complex
random energy model.
We study the stochastic fluctuations in this model. We iden-
tify the asymptotic structure of complex zeros of the so-called
partition function. This structure provides an explanation
for the phase transitions. We discuss how correlations be-
tween the real and imaginary parts of the random energy
influence the fluctuations and the phase diagram.
The value of this model is not only pedagogical: it comes
with a universality class and has features which are shared
with much more complicated models. Some of these we
consider in Chapters 2, 3 and 4.

This chapter is based on publication 4a.

1.1 introduction

Random energy model is a paradigmatic (and particularly simple) model of a disordered system
which displays a phase transition.

energy based models and phase transitions. An energy based model is a model
defined by a configuration/state space and an energy function on it. Given an energy function
{Hn(s)}s∈Sn on the configuration space Sn of of size n ∈N, a classical manifestation of phase
transitions is the loss of analyticity of the log-partition function pn(β):

pn(β) :=
1
n

logZn(β), β ∈ R+ (1.1)

with

Zn(β) := ∑
s∈Sn

exp(βHn(s)), β ∈ R+, (1.2)

as the size of the system increases n→ ∞ (i.e., in the so-called thermodynamic limit). Obviously,
we have to make suitable choices of the configuration space, of the energy function and of the
notion of size, so that the thermodynamic limit makes sense and is non-trivial.

3



4 complex random energy model

random energy model. The REM was introduced by Derrida [71, 72]. In the REM, the
configuration space has very little structure:

SN := {1, . . . , N}, N ∈N. (1.3)

where N is the number of configurations of the system. The energy function in the REM is
random. It is a stochastic process and a very simple one: white noise. In the subsequent chapters,
we consider more involved/realistic stochastic processes playing the rôle of the energy function.
Nevertheless, the simple model we are starting here with will serve as a guidance.

Let X, X1, X2, . . . be independent real standard normal random variables of which we think
of as of energies assigned to the configurations. The partition function of the REM at inverse
temperature β is defined by

ZN(β) =
N

∑
k=1

eβ
√

nXk , (1.4)

where we use the notation n = log N.

0 1 2 3 4 5 6
-8

-6

-4

-2

0

2

4

6

Figure 1.1: Simulation of the REM field of energies X generated as positions of the independent
random walkers (with Gaussian increments) at the right edge of the plot. The "random walk
perspective" is chosen to compare the REM to models with strong correlations from the
subsequent chapters, cf. Figures 2.2 and 3.1. The idea for the plot is adapted from Ouimet
[163]

heuristics. Why
√

n scaling in (1.4)? In line with a statistical physics convention, we would
like the logarithm of the partition function to be an extensive quantity in n, i.e.,

logZN(β) ∼
N→∞

p(β)n with high probability, (1.5)



1.1 introduction 5

where p(β) is an n-independent constant, cf. (1.1). For (1.5) to hold, in view of the trivial
bounds

1
n

log
(

N
max
k=1

eβ
√

nXk

)
≤ 1

n
logZN(β) ≤ 1

n
log
(

N
N

max
k=1

eβ
√

nXk

)
= 1 +

1
n

log
(

N
max
k=1

eβ
√

nXk

)
,

(1.6)

it is necessary that the maximal summand maxN
k=1 eβ

√
nXk in the partition function (1.4) is of

order eM(β)n for some n-independent constant M(β) with high probability. It is a standard fact
from extreme value theory (see, e.g., Leadbetter et al. [137, Example 1.7.1]) that

N
max
k=1

Xk ∼
N→∞

√
2n, a.s. (1.7)

This implies the desired order of the maximal term with M(β) =
√

2β. See also Section 2.5, and
(2.19) in particular, for further probabilistic heuristics on the asymptotic behavior of partition
functions.

a phase transition. For real inverse temperatures β > 0, Derrida [71, 72] heuristically
studied the asymptotic behavior of logZN(β) as N → ∞ (or equivalently, as n → ∞) and
computed that

p(β) := lim
N→∞

1
n

logZN(β) =

1 + 1
2 β2, 0 ≤ β ≤

√
2,

√
2β, β ≥

√
2.

(1.8)

This formula was confirmed using rigorous probabilistic arguments establishing that conver-
gence (1.8) holds both a.s. and in Lq, q ≥ 1; see Bovier [43], Eisele [82], and Olivieri & Picco
[161].

An immediate consequence of (1.8) is that p(β) is non-analytic at βc =
√

2 which is according
to the physics nomenclature (cf., e.g., Ruelle [173]) a manifestation of a phase transition at βc.

From the analytic viewpoint, phase transitions can be understood within the realm of
complex analysis by considering β ∈ C as we discuss in the next paragraph.

the lee-yang program. Since the pioneering work of Lee and Yang [138, 191], much
attention in the statistical physics literature has been paid to studying partition functions
of various models at complex values of parameters such as complex inverse temperature or
complex external magnetic field, see, e.g., Bena et al. [25] and Biskup et al. [33]. These studies
are sometimes referred to as the Lee–Yang program. The motivation here is to identify the
mechanisms causing phase transitions of the model under study. These transitions manifest
themselves in the analyticity breaking of the logarithm of the partition function which, in turn,
is related to the complex zeros of the partition function. Phase transitions are thus associated
with the accumulation points of the complex zeros of the partition function on the real axis, in
the large system limit. In this respect, complex-valued parameters provide a clean framework
for identification of phase transitions. The main emphasis of the Lee–Yang program was on the
classical lattice models of statistical mechanics.
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Figure 1.2: Complex zeros of ZN in the large N limit. There are three phases: B1 (white, no zeros), B2
(light gray, density of zeros is of order 1), B3 (dark gray, density of zeros is of order n). On
the boundary of B1 the linear density of zeros is of order n. The plot shows also the contour
lines (gray curves and lines) of the log-partition function p.

Using heuristic arguments, Derrida [74] studied the REM at complex inverse temperature
β = σ + iτ. He derived the following logarithmic asymptotics extending (1.8) to the complex
plane:

p(β) := lim
N→∞

1
n

log |ZN(β)| =


1 + 1

2 (σ
2 − τ2), β ∈ B1,

√
2|σ|, β ∈ B2,

1
2 + σ2, β ∈ B3,

(1.9)

where B1, B2, B3 are three subsets of the complex plane (see Figure 1.2) defined by

B1 = C\B2 ∪ B3, (1.10)

B2 = {β ∈ R2 : 2σ2 > 1, |σ|+ |τ| >
√

2}, (1.11)

B3 = {β ∈ R2 : 2σ2 < 1, σ2 + τ2 > 1}. (1.12)

Here, Ā denotes the closure of the set A. Note that the limiting log-partition function p is
continuous.

To derive (1.9), Derrida [74] used an approach which can be roughly described as follows.
Instead of ZN(β), one can consider the truncated sum

Z∗N(β) =
N

∑
k=1

eβ
√

nXk 1|Xk |<
√

2n.
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Indeed, with high probability it holds that Z∗N(β) = ZN(β) since the order of the maximum
term among |X1|, . . . , |XN | is

√
2n and the existence of an outlier satisfying |Xk| >

√
2n has

probability converging to 0. Note, however, that although Z∗N(β) and ZN(β) are close in
probability, their expectations (and standard deviations) may be very different from each other,
at least for some values of β. Derrida derived an asymptotic formula for the expectation of
Z∗N(β), as N → ∞, using the saddle-point method. Two cases are possible: the expectation is
dominated by the energies Xk inside the interval (−

√
2n,
√

2n) (equivalently, the contribution
of the saddle point dominates the expectation), or by the energies located near one of the
boundary points ±

√
2n. He also obtained two similar cases for the standard deviation of Z∗N(β).

Comparing the resulting four formulas, Derrida discovered the three phases B1, B2, B3. The
arguments of Derrida [74] are not fully rigorous, although it should be emphasized that he did
not use the replica method or other standard non-rigorous spin glass method. In this chapter,
we make the argument of Derrida rigorous and refine his results by deriving distributional
limit theorems for the fluctuations of ZN(β) (and for the fluctuations in some more general
models, see Section 1.4) at complex β. An essential feature of the REM at complex temperature
is the possibility of canceling of terms in ZN(β) due to the presence of complex amplitudes. It
is for this reason that some standard techniques of rigorous spin glass theory [185] like the
concentration inequalities or the second-moment method do not (or do not always) lead to the
desired result.

Based on his formula (1.9) for the limiting log-partition function, Derrida [74] computed
the asymptotic distribution of zeros of ZN in the complex plane. His predictions were in a
good agreement with the numerical simulations of Moukarzel & Parga [153]. Derrida observed
that since ZN(β) is an analytic function of β, its empirical distribution of zeros (a measure ΞN

assigning to every zero of ZN a weight equal to its multiplicity) is given by

ΞN =
1

2π
∆ log |ZN |, (1.13)

where ∆ = ∂2

∂σ2 +
∂2

∂τ2 denotes the Laplace operator in the β-plane. In fact, identity (1.13) should
rigorously be understood in the sense of distributions (= generalized functions), cf. Remark 1.3.1.
Taking the large N limit, Derrida obtained the formula n

2π ∆p for the asymptotic distribution
of zeros of ZN . Since the function p is harmonic in B1 and B2, Derrida predicted that “there
should be no zeros (or at least that the density of zeros vanishes) in phases B1 and B2”. In
phase B3, “the density of zeros is uniform” and is asymptotic to n

2π . Also, since the normal
derivative of p has a jump on the boundary of B1, but has no jump on the boundary between
B1 and B3 “the boundaries between phases B1 and B2, and between phases B1 and B3 are lines
of zeros whereas the separation between phases B2 and B3 is not”. The argument of Derrida
involves interchanging the Laplace operator and the large N limit. In the this chapter, we justify
Derrida’s approach rigorously and derive further results on the distribution of zeros of ZN .
Namely, we relate the zeros of ZN to the zeros of two random analytic functions: a Gaussian
analytic function G (in phase B3), and a zeta-function ζP associated to the Poisson process (in
phase B2). Also, we will clarify the local structure of the mysterious “lines of zeros” on the
boundary of B1.

For the partition function of REM, considered as a function of a complex external magnetic
field, a non-rigorous analysis similar to that of Derrida [74] has been carried out by Moukarzel
& Parga [154, 155]. For directed polymers with complex weights on a tree, which is another
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related model, the logarithmic asymptotics (1.9) has been derived in [75]; see also [27, 131].
Recently, Takahashi [183] and Obuchi & Takahashi [160] studied the complex zeros in the
generalized REM and other spin glass models using the non-rigorous replica method. However,
spin glasses at complex temperature have not been much studied rigorously in the mathematics
literature. Our aim is to fill this gap.

summary of motivations. The motivation to consider the complex-valued setup is multi-
fold:

1. Critical phenomena. Lee and Yang [191] observed that phase transitions (= analyticity
breaking of the log-partition function) occur at critical points due to the accumulation
of complex zeros of the partition function (viewed as a function of the external field)
around the critical points on the real line, as the size of the system tends to infinity (=
thermodynamic limit).

2. Quantum physics and interference phenomena. The formalism of quantum physics
is based on the sums (and integrals) of complex exponentials. This naturally leads to
cancellations between the magnitudes of the summands in the partition function. This
is a manifestation of the interference phenomenon, see, e.g., Derrida et al. [75] and
Dobrinevski et al. [78]. See also the studies of the quantum Monte Carlo method Düring
& Kurchan [80].

3. Random analytic functions. The sum of random exponentials ZN is a natural random
analytic function exhibiting, despite of its simple form, a rather non-trivial behavior. We
hope that the methods developed to study this function can be applied to other random
analytic functions, for example to random polynomials or random Taylor series. For a
recent work in this direction, we refer to Kabluchko [122] and Kabluchko & Zaporozhets
[124]. Also, ZN can be interpreted as a (normalized) characteristic function of the i.i.d.
normal sample X1, . . . , XN . This connection will be discussed in Section 1.6.

4. Random matrix theory and the Riemann zeta function. The Riemann zeta function is a
central object of analytic number theory. Striking relationships between statistical physics
of random energy models and randomized versions of the zeta function and characteristic
polynomials of random matrices were conjectured by Fyodorov et al. [95].

1.2 notation

We will write the complex inverse temperature β in the form β = σ + iτ, where σ, τ ∈ R. We
use the notation n = log N, where N is a large integer and the logarithm is natural. Note that
in the physics literature on the REM, it is customary to take the logarithm at basis 2. Replacing
β by β/

√
log 2 in our results we can easily switch to the physics notation.

We denote by NR(0, s2) the real Gaussian distribution with mean zero and variance s2 > 0.
By NC(0, s2), we denote the complex Gaussian distribution with density

z 7→ 1
πs2 e−|z/s|2
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w.r.t. the Lebesgue measure on C. Note that Z ∼ NC(0, s2) iff Z = X + iY, where X, Y ∼
NR(0, s2/2) are independent. In this case, EZ = 0 and E|Z|2 = 1. Real or complex normal
distribution is referred to as standard if s = 1. The standard normal distribution function is
denoted by Φ.

Convergence in probability and weak (distributional) convergence will be denoted by P−→

and w−→, respectively. Let C be a generic positive constant whose value will change at different
occurrences.

1.3 results on zeros

Let ZN be the partition function of the REM defined as in (1.4). Note the distributional equalities

ZN(β)
d
= ZN(−β), ZN(β)

d
= ZN(β). (1.14)

Due to (1.14), it is often enough to consider the case σ, τ ≥ 0. The next result describes the
global structure of complex zeros of ZN , as N → ∞. Let Ξ3 be the Lebesgue measure restricted
to B3. Also, let Ξ13 be the one-dimensional length measure on the boundary between B1 and
B3 (which consists of two circular arcs). Finally, let Ξ12 be a measure having the density

√
2|τ|

with respect to the one-dimensional length measure restricted to the boundary between B1 and
B2 (which consists of four line segments). Define a measure Ξ = 2Ξ3 + Ξ12 + Ξ13.

Theorem 1.3.1. For every continuous function f : C→ R with compact support,

1
n ∑

β∈C : ZN(β)=0
f (β)

P−→
N→∞

1
2π

∫
C

f (β)Ξ(dβ). (1.15)

Remark 1.3.1. As a consequence, the random measure assigning a weight 1/n to each zero of ZN

converges weakly to the deterministic measure 1
2π Ξ. The limit measure Ξ is related to the limiting

log-partition function p, see (1.9), by the formula Ξ = ∆p, in accordance with [74]. Here, ∆ is the
Laplace operator which should be understood in the distributional sense. The point-wise Laplacian of
p is easily seen to be 2Ξ3. However, in the distributional Laplacian there are additional terms which
come from the jumps of the normal derivative of p along the boundaries B̄1 ∩ B̄2 and B̄1 ∩ B̄3. On the
boundary B̄2 ∩ B̄3 the jump turns out to be 0. that p can be viewed as the two-dimensional electrostatic
potential generated by the charge distribution Ξ.

Theorem 1.3.1 makes the last formula in [74] rigorous. In the next theorems, we will
investigate more fine properties of the zeros of ZN . We start by describing the local structure
of zeros of ZN in a neighborhood of area 1/n of a fixed point β0 ∈ B3. Let {G(t) : t ∈ C} be a
Gaussian random analytic function [156] given by

G(t) =
∞

∑
k=0

ξk
tk
√

k!
, (1.16)

where ξ0, ξ1, . . . are independent standard complex Gaussian random variables. The complex
zeros of G form a remarkable point process which has intensity 1/π and is translation
invariant. Up to rescaling, this is the only translation invariant zero set of a Gaussian analytic
function; see [111, Section 2.5]. This and related zero sets have been much studied; see the
monograph [111].
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Theorem 1.3.2. Let β0 ∈ B3 be fixed. For every continuous function f : C→ R with compact support,

∑
β∈C : ZN(β)=0

f (
√

n(β− β0))
w−→

N→∞
∑

β∈C : G(β)=0
f (β).

Remark 1.3.2. Equivalently, the point process consisting of the points
√

n(β− β0), where β is a zero
of ZN , converges weakly to the point process of zeros of G.

Derrida [74] predicted that the set B1 should be free of zeros. As we will see below, it is not
true that the number of zeros in B1 converges to 0 in probability since with non-vanishing
probability there exist zeros very close to the boundary of B1. However, a slightly weaker
statement is true.

Theorem 1.3.3. Let K be a compact subset of B1. Then, there exists ε > 0 depending on K such that

P[ZN(β) = 0, for some β ∈ K] = O(N−ε), N → ∞.

As a consequence, the number of zeros of ZN in K converges to 0 in probability. It is natural
to conjecture that the convergence holds a.s. The number ε, as provided by the proof of
Theorem 1.3.3, converges to 0 as the distance between K and the boundary of B1 gets smaller.
So, the a.s. convergence does not follow from a Borel–Cantelli argument.

Consider now the zeros of ZN in the set B2. We will show that in the limit as N → ∞ the
zeros of ZN in B2 look like the zeros of certain random analytic function ζP. This function
may be viewed as a zeta-function associated to the Poisson process. It is defined as follows.
Let P1 < P2 < . . . be the arrival times of a unit intensity homogeneous Poisson process on
the positive half-line. That is, Pk = ε1 + . . . + εk, where ε1, ε2, . . . are i.i.d. standard exponential
random variables, i.e., P[εk > t] = e−t, t ≥ 0. For T > 1, define the random process

ζ̃P(β; T) =
∞

∑
k=1

1

Pβ
k

1Pk∈[0,T] −
∫ T

1
t−βdt, β ∈ C. (1.17)

Theorem 1.3.4. With probability 1, the sequence ζ̃P(β; T) converges as T → ∞ to a limiting function
denoted by ζ̃P(β). The convergence is uniform on compact subsets of the half-plane {β ∈ C : Re β >

1/2}.

Corollary 1.3.1. With probability 1, the Poisson process zeta-function

ζP(β) =
∞

∑
k=1

1

Pβ
k

(1.18)

defined originally for Re β > 1, admits a meromorphic continuation to the domain Re β > 1/2. The
function ζ̃P(β) = ζP(β)− 1

β−1 is a.s. analytic in this domain.

The next theorem describes the limiting structure of zeros of ZN in B2. The form of the
process ζP appearing there is not surprising and can be explained as follows. In phase B2 the
process ZN is dominated by the extremal order statistics of the sample X1, . . . , XN . These form
a Poisson point process in the large N limit, see, e.g., [171, Corollary 4.19(i)], and ζP is some
functional of this process.
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Theorem 1.3.5. Let f : B2 → R be a continuous function with compact support. Let ζ
(1)
P and ζ

(2)
P be

two independent copies of ζP. Then,

∑
β∈B2 : ZN(β)=0

f (β)
w−→

N→∞
∑

β∈B2 :
ζ
(1)
P (β/

√
2)=0

f (β) + ∑
β∈B2 :

ζ
(2)
P (β/

√
2)=0

f (−β). (1.19)

Theorem 1.3.5 tells us that the zeros of ZN in the domain σ > 1/
√

2, |σ|+ |τ| >
√

2 (which
constitutes one half of B2) have approximately the same law as the zeros of ζP, as N → ∞.
Let us stress that the approximation breaks down in the triangle σ > 1/

√
2, |σ|+ |τ| <

√
2.

Although the function ζP is well-defined and may have zeros there, the function ZN has, with
high probability, no zeros in any compact subset of the triangle by Theorem 1.3.3.

Next, we state some properties of the function ζP. Let β > 1/2 be real. For β 6= 1, the random
variable ζP(β) is stable with index 1/β and skewness parameter 1. In fact, (1.17) is just the
series representation of this random variable; see [178, Theorem 1.4.5]. For β = 1, the random
variable ζ̃P(1) (which is the residue of ζP at 1) is 1-stable with skewness 1. For general complex
β, we have the following stability property.

Proposition 1.3.1. If ζ
(1)
P , . . . , ζ

(k)
P are independent copies of ζP, then we have the following distribu-

tional equality of stochastic processes:

ζ
(1)
P + . . . + ζ

(k)
P

d
= kβζP. (1.20)

To see this, observe that the union of k independent unit intensity Poisson processes has the
same law as a single unit intensity Poisson process scaled by the factor 1/k. As a corollary, the
distribution of the random vector (Re ζP(β), Im ζP(β)) belongs to the family of operator stable
laws; see [147].

Proposition 1.3.2. Fix τ ∈ R. As σ ↓ 1/2, we have

√
2σ− 1 ζP(σ + iτ) w−→

NC(0, 1), if τ 6= 0,

NR(0, 1), if τ = 0.
(1.21)

As a corollary, there is a.s. no meromorphic continuation of ζP beyond the line σ = 1/2.
Using the same method of proof, it can be shown that for every different τ1, τ2 > 0 the random
variables

√
2σ− 1 ζP(σ + iτj), j = 1, 2, become asymptotically independent as σ ↓ 1/2. Thus,

the function ζP looks like a naïve white noise near the line σ = 1/2. The intensity of complex
zeros of ζP at β can be computed by the formula g(β) = 1

2π ∆E log |ζP(β)|, where ∆ is the
Laplace operator; see [111, Section 2.4]. Proposition 1.3.2 suggests that g(β) ∼ 1

π
1

(2σ−1)2 as
σ ↓ 1/2. In particular, every point of the line σ = 1/2 should be an accumulation point for the
zeros of ζP with probability 1.

Let us look locally at the zeros of ZN near some β0 = σ0 + iτ0 on one of the boundaries
B̄1 ∩ B̄3 or B̄1 ∩ B̄2. We will show that in both cases the zeros form approximately an arithmetic
sequence. The structure of the measures Ξ13 and Ξ12 in Theorem 1.3.1 suggests that the
distances between the consequent zeros should behave like 2π

n in the first case and like
√

2π
|τ0|n

in the second case. The next theorems show that this is indeed true. First, we analyze the
boundary B̄1 ∩ B̄3.
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Theorem 1.3.6. Let β0 = σ0 + iτ0 be such that σ2
0 + τ2

0 = 1 and σ2
0 < 1/2. There exist a complex-

valued random variable ξ and a bounded real sequence δN such that for every continuous function
f : C→ R with compact support,

∑
β∈C : ZN(β)=0

f
(

n
(

β

β0
− 1
)
− iδN

)
w−→

N→∞
∑

k∈Z

f (2πik + ξ). (1.22)

Remark 1.3.3. In other words, the zeros of ZN near β0 are given by the formula

β = β0

(
1 +

2πik + ξ + iδN

n

)
+ o

(
1
n

)
, k ∈ Z. (1.23)

As we will see in the proof, the random variable Re ξ takes negative values with positive probability. It
follows that the probability that ZN has a zero in B1 does not go to 0 as N → ∞.

The boundary B̄1 ∩ B̄2 consists of 4 line segments. By symmetry (1.14), it suffices to consider
one of them.

Theorem 1.3.7. Let β0 = σ0 + iτ0 be such that σ0 > 1/
√

2, τ0 > 0 and σ0 + τ0 =
√

2. There
exist a complex-valued random variable η and a complex sequence dN = O(log n) such that for every
continuous function f : C→ R with compact support,

∑
β∈C : ZN(β)=0

f
(

e
2πi

3 n(β− β0)− dN

)
w−→

N→∞
∑

k∈Z

f
(

2πik + η√
2τ0

)
. (1.24)

Remark 1.3.4. In other words, the zeros of ZN near β0 are given by the formula

β = β0 + e−
2πi

3
1
n

(
2πik√

2τ0
+ dN

)
+ o

(
1
n

)
, k ∈ Z. (1.25)

1.4 results on fluctuations

We state our results on fluctuations for a generalization of (1.4) which we call complex random
energy model. This model involves complex phases and allows for arbitrary dependence
between the energies and the phases. Let (X, Y), (X1, Y1), . . . be i.i.d. zero-mean bivariate
Gaussian random vectors with

VarXk = VarYk = 1, Corr(Xk, Yk) = ρ. (1.26)

Here, −1 ≤ ρ ≤ 1 is fixed. Recall (1.4) and consider the following partition function:

ZN(β) =
N

∑
k=1

e
√

n(σXk+iτYk), β = (σ, τ) ∈ R2. (1.27)

For τ = 0, this is the REM of Derrida [72] at real inverse temperature σ. For ρ = 1, we obtain
the REM at the complex inverse temperature β = σ + iτ considered above; see (1.4). For ρ = 0,
the model is a REM with independent complex phases considered in [75]. Note also that the
substitutions (β, ρ) 7→ (−β, ρ) and (β, ρ) 7→ (β̄,−ρ) leave the distribution of ZN(β) unchanged.

Recall (1.8). Define the log-partition function as

pN(β) =
1
n

log |ZN(β)|, β = (σ, τ) ∈ R2. (1.28)
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Theorem 1.4.1. For every β ∈ R2, the limit

p(β) := lim
N→∞

pN(β) (1.29)

exists in probability and in Lq, q ≥ 1, and is explicitly given as

p(β) =


1 + 1

2 (σ
2 − τ2), β ∈ B1,

√
2|σ|, β ∈ B2,

1
2 + σ2, β ∈ B3.

(1.30)

Note that the limit in (1.30) does not depend on ρ. However, we will see below that the
fluctuations of ZN(β) do depend on ρ. The next theorem shows that ZN(β) satisfies the central
limit theorem in the domain σ2 < 1/2.

Theorem 1.4.2. If σ2 < 1/2 and τ 6= 0, then

ZN(β)− N1+ 1
2 (σ

2−τ2)+iστρ

N
1
2+σ2

w−→
N→∞

NC(0, 1). (1.31)

Remark 1.4.1. If σ2 < 1/2 and τ = 0, then the limiting distribution is real normal, as was shown
in [42].

Remark 1.4.2. If in addition to σ2 < 1/2 we have σ2 + τ2 > 1, then N1+ 1
2 (σ

2−τ2) = o(N
1
2+σ2

) and,
hence, the theorem simplifies to

ZN(β)

N
1
2+σ2

w−→
N→∞

NC(0, 1). (1.32)

Eq. (1.32) explains the difference between phases B1 and B3: in phase B1 the expectation of ZN(β) is of
larger order than the mean square deviation, whereas, in phase B3, vice versa: the mean square deviation
is larger than the expectation. It is this behavior that leads to the phase transition between B1 and B3 in
(1.30).

In the boundary case σ2 = 1/2, the limiting distribution is normal, but it has truncated
variance.

Theorem 1.4.3. If σ2 = 1/2 and τ 6= 0, then

ZN(β)− N1+ 1
2 (

1
2−τ2)+iστρ

N
w−→

N→∞
NC(0, 1/2).

Next, we describe the fluctuations of ZN(β) in the domain σ2 > 1/2. Due to (1.14), it is not a
restriction of generality to assume that σ > 0. Let bN be a sequence such that

√
2πbNeb2

N/2 ∼ N
as N → ∞. We can take

bN =
√

2n− log(4πn)
2
√

2n
. (1.33)
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Theorem 1.4.4. Let σ > 1/
√

2, τ 6= 0, and |ρ| < 1. Then,

ZN(β)− NE[e
√

n(σX+iτY)1X<bN ]

eσ
√

nbN

w−→
N→∞

S√2/σ, (1.34)

where Sα denotes a complex isotropic α-stable random variable with a characteristic function of the form
E[ei Re(Sαz)] = e−const·|z|α , z ∈ C.

Remark 1.4.3. If σ > 1/
√

2 and τ = 0, then the limiting distribution is real totally skewed α-stable;
see [42]. If σ > 1/

√
2 and ρ = 1 (resp., ρ = −1), then can be shown that that

ZN(β)− NE[eβ
√

nX1X<bN ]

eβ
√

nbN

w−→
N→∞

ζ̃P

(
β√
2

) (
resp., ζ̃P

(
β̄√
2

))
. (1.35)

Remark 1.4.4. The truncated expectation on the left-hand side of (1.34) can be computed. It can be
shown that under the assumptions of Theorem 1.4.4,

ZN(β)

eσ
√

nbN

w−→
N→∞

S√2/σ, if σ + |τ| >
√

2, (1.36)

ZN(β)− N1+ 1
2 (σ

2−τ2)+iστρ

eσ
√

nbN

w−→
N→∞

S√2/σ, if σ + |τ| ≤
√

2. (1.37)

Similarly, if σ > 1/
√

2, but ρ = 1, then we have

ZN(β)

eβ
√

nbN

w−→
N→∞

ζP

(
β√
2

)
, if σ + |τ| >

√
2, (1.38)

ZN(β)− N1+ 1
2 (σ

2−τ2)+iστ

eβ
√

nbN

w−→
N→∞

ζP

(
β√
2

)
, if σ + |τ| ≤

√
2, σ 6=

√
2. (1.39)

For ρ = −1, we have to replace β by β̄.

1.5 related results

lee-yang program. The Lee-Yang approach [138, 191] to phase transitions (cf. Section 2.3)
is a part of standard books on mathematical Statistical Physics for many decades [173]. We refer
to the works Biskup et al. [31, 32], Borcea and Brändén [36], Fröhlich and Rodriguez [90] for the
mathematical state of the art of this program and further references1. Shamis & Zeitouni [181]
studied the classical Curie-Weiss model at complex temperatures The above works, however,
do not concern with disordered systems which are the main focus of this work.

Several models of of complex-valued random energy landscapes were considered in the
literature. We group them according to the strength of correlations.

1 Bena et al. [25] provides a review of the physics literature. Interestingly, even experimental measurements of the
partition function zeros via quantum interference are possible, see Peng et al. [168].
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independent energies. The REM was suggested by Derrida [71] as a simple spin glass
model and independently by Lifshitz et al. [140] and Pastur [167] as a model for wave propa-
gation in inhomogeneous media. Though simple, this model plays a paradigmatic rôle in the
physics of disordered systems, see, e.g., Fyodorov & Bouchaud [94] and references therein.
Mathematically, the behaviour of the REM at real inverse temperature is well understood;
see Bovier et al. [42] and Bovier [43, Chapter 9]. For the REM at complex inverse temperature,
Derrida [74] derived the limiting free energy, obtained the phase diagram and computed the
limiting distribution of complex zeros of the partition function. Moukarzel and Parga con-
firmed Derrida’s results numerically Moukarzel & Parga [153] and studied REM in the complex
external field Moukarzel & Parga [154, 155]. Koukiou Koukiou [131] studied analyticity of the
partition function of the REM in a complex plain neighborhood of the origin.

In [123], the results of Derrida [74] were confirmed rigorously via the probabilistic analysis of
fluctuations of the partition function. As a consequence of the fluctuation results, it was shown
in [123] that the limiting log-partition function is given by (3.11) and does not depend on the
correlation parameter ρ, cf. (3.6).

logarithmic correlations. A class of models with the so-called logarithmic correlations
turns out to be exactly at the borderline of the REM universality class in the following sense:
the phase diagram is the same as in the REM, however the limiting fluctuations of the partition
function are already different from the case of independent energies (REM).

In [75], Derrida et al. considered a landscape of complex-valued random energies attached to
the leaves of a deterministic regular tree of fixed depth, as the depth tends to infinity. Similarly
to the locations of the BBM particles, the energies of the leaves are generated as a sum of
the independent complex-valued weights collected along the path connecting the root to a
leaf. This can be seen as a mean-field model of directed polymers with random complex weights on
the regular tree. For this model, under the assumption ρ = 0, the authors of [75] showed that
the very same formula (3.11) holds for the directed polymer without resorting to the more
informative analysis of fluctuations of the partition function.

Barral et al. [18, 19] studied complex Gaussian multiplicative cascades on the unit interval. These
works cover Phase I (cf. Fig. 3.2) via a martingale convergence result. In Phase II, the authors
show tightness of the properly rescaled partition function. The model is constructed using
a dyadic embedding of the binary tree into the unit interval. This makes the model closely
related to that of [75].

On Euclidean spaces in higher dimensions (d ≥ 2), under the assumption ρ = 0, a random
energy model on Euclidean spaces with logarithmic (w.r.t. the Euclidean distance) correlations
was studied by Lacoin et al. [133]. In [133], for this Gaussian multiplicative chaos, the same
phase diagram as on Figure 3.2 was identified. However, only Phases I and III were treated in
[133]. Maduale et al. [144] studied the complex cascade model on a regular binary tree closely
related to the models of [18, 19, 75]. On the boundary between Phases I and II, [144] provides a
modulus of continuity estimate for the chaos. For a review on Gaussian multiplicative chaos,
we refer to Rhodes and Vargas [172]. Purely imaginary multiplicative chaos was studied by
Junnila et al. [121].

Phase II was studied for the complex branching BBM energy model in the case ρ = 0 in [144].
We analyze this model with ρ 6= 0 in Chapter 3.
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As mentioned in the remark below Theorem 3.5.2, the branching structure of the BBM
implies complex distributional equations (3.25), which are referred to as complex smoothing
transform. A detailed study on how solutions to such equations with complex weights look like
was recently done by Meiners and Mentemeier [148], see also the recent paper by Kolesko and
Meiners [129]. The case of real-valued scalar weights was treated by Alsmeier and Meiners [7]
and by Iksanov and Meiners [115].

Fluctuations of the so-called additive (Biggins’) martingale (which is nothing else as the
partition function) for a supercritical branching random walk were studied for complex
temperatures by Iksanov et al. [114]. In the real-valued case, fluctuations of the derivative
martingale for the BBM (cf., (3.19)) were identified by Maillard and Pain [146].

Hairer and Shen [106] studied the dynamical sine-Gordon model – a non-linear parabolic SPDE
in two spatial dimensions subject to additive space-time white noise. In [106], it is shown
that the corresponding Hairer’s regularity structure is related to the complex multiplicative
Gaussian chaos from [133].

Striking conjectures on the relationships of the log-correlated (complex) random energy
models with characteristic polynomials of random matrices, and the Riemann zeta function were
formulated by Fyodorov et al. [95]. Some of these conjectures have been considered in the
mathematics literature, see, e.g., Arguin et al. [9, 11], and Saksman and Webb [177].

going deep beyond rem: grem. What happens beyond the above mentioned borderline
of logarithmic correlations of the REM universality class? Motivated by Parisi’s theory of the
hierarchical organization of the pure states and related hierarchical replica symmetry breaking
for the Sherrington-Kirkpatrick (SK) model [151], Derrida introduced the GREM; see [73, 76,
77]. This model has “designed” hierarchical correlations. Rigorous results on the GREM at real
inverse temperatures were obtained by Capocaccia et al. [50] and in a series of works by Bovier
and Kurkova [39–41]. For a review of these results, we refer to Bovier and Kurkova [45] and
Bovier [43, Chapter 10]. The recent progress in rigorous understanding of the SK-type models
draws heavily on the analysis of fluctuations in the GREM and their relation to the SK model;
see [164]. Using the non-rigorous replica method, Takahashi [183] computed the log-partition
function of the GREM at complex temperatures. In Chapter 2, we rigorously confirm and
extend the results of [183].

lee-yang program. The Lee-Yang approach [138, 191] to phase transitions (cf. Section 2.3)
is a part of standard books on mathematical Statistical Physics for many decades [173]. We refer
to the works Biskup et al. [31, 32], Borcea and Brändén [36], Fröhlich and Rodriguez [90] for the
mathematical state of the art of this program and further references2. Shamis & Zeitouni [181]
studied the classical Curie-Weiss model at complex temperatures The above works, however,
do not concern with disordered systems which are the main focus of this work.

2 Bena et al. [25] provides a review of the physics literature. Interestingly, even experimental measurements of the
partition function zeros via quantum interference are possible, see Peng et al. [168].
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1.6 discussion, extensions and open questions

The results on fluctuations are closely related, at least on the heuristic level, to the results on
the zeros of ZN . In Section 1.4, we claimed that regardless of the value of β 6= 0 we can find
normalizing constants mN(β) ∈ C, vN(β) > 0 such that

ZN(β)−mN(β)

vN(β)
w−→

N→∞
Z(β)

for some non-degenerate random variable Z(β). It turns out that in phase B1 the sequence
mN(β) is of larger order than vN(β), which suggests that there should be no zeros in this phase.
In phases B2 and B3, the sequence mN(β) is of smaller order than vN(β), which does not rule
out the possibility of zeros in these phases. One way to guess the density of zeros in phases
B2 and B3 is to look more closely at the correlations of the process ZN . In phase B3, it can be
shown that ZN(β1) and ZN(β2) become asymptotically decorrelated if the distance between
β1 and β2 is of order larger than 1/

√
n. This suggests that the distances between the close

zeros in phase B3 should be of order 1/
√

n and hence, the density of zeros should be of order
n. Similarly, in phase B2 the variables ZN(β1) and ZN(β2) remain non-trivially correlated at
distances of order 1, which suggests that the density of zeros in this phase should be of order 1.

An additional motivation for studying ZN comes from its connection to the empirical
characteristic function. Given an i.i.d. standard normal sample X1, . . . , XN , the empirical
characteristic function is defined by cN(β) = ∑N

k=1 eiβXk . We have ZN(β) = cN(−i
√

nβ). The
limit behavior of the stochastic process {cN(β) : β ∈ R} without rescaling β by the factor√

n has been much studied; see, e.g., [62, 88]. There has been also interest in the behavior of
RN = inf{β > 0 : Re cN(β) = 0}, the first real zero of Re cN ; see [107, 113]. In particular, it has
been shown in [107, Corollary 4.5] that, for all t ∈ R,

lim
N→∞

P[R2
N − n < 2t] = Φ(−

√
2e−t).

Hence, the first real zero of ReZN(β) restricted to β ∈ iR is located near i with high probability.
This is exactly the point where the imaginary axis meets the set B3.

It is possible to extend or strengthen our results in several directions. The statements of
Theorem 1.3.1 and Theorem 1.4.1 should hold almost surely, although it seems difficult to prove
this. Several authors considered models involving sums of random exponentials generalizing
the REM; see [24, 35, 60, 120]. They analyze the case of real β only. We believe that our results
(both on zeros and on fluctuations) can be extended, with appropriate modifications, to these
models.





2 C O M P L E X G E N E R A L I Z E D R A N D O M E N E R GY
M O D E L

Using the so-called Generalized Random Energy Model at com-
plex temperatures, we explore the phase diagrams of disor-
dered systems with complex energies beyond the universality
class of the REM from Chapter 1. We identify the com-
plete phase diagram of the GREM in the complex plane
and describe the global limiting distribution of complex
zeros of the partition function. We show that depending
on β ∈ C the random energy of each level of the GREM
contributes to the free energy in one of three possible ways:
via the extremal values (glassy phase), via the variance (fluc-
tuation phase) or via the mean value (expectation phase).
Given a GREM with d levels, it turns out that there are
1
2 (d + 1)(d + 2) phases in total, each of which can symboli-
cally be encoded as Gd1 Fd2 Ed3 with d1, d2, d3 ∈N0 such that
d1 + d2 + d3 = d, where d is the depth of the GREM tree.
The encoding is deciphered as follows: in phase Gd1 Fd2 Ed3 ,
the first d1 levels (counting from the root of the GREM
tree) are in the glassy phase (G), the next d2 levels are in
the fluctuation phase (F), and the last d3 levels are in the
expectation phase (E). Moreover, we identify the limiting fluc-
tuations of the partition function. We show that if |Re β| is
small enough, then the limiting fluctuations of the partition
function are Gaussian, otherwise the fluctuations are non-
Gaussian and are influenced by Poisson cascades of extremal
energies. This knowledge of fluctuations immediately gives
the local distributions of zeros of the partition function
viewed as a function of β. As a corollary, we get an explicit
formula for the free energy and derive the phase diagram.
Finally, we discuss implications of the above results and a
number of conjectures on disordered systems with complex
energies.

This chapter is based on publication 9a.

What happens beyond the above mentioned (see Section 1.5) borderline of logarithmic
correlations of the REM universality class? Motivated by Parisi’s theory of the hierarchi-
cal organization of the pure states and related hierarchical replica symmetry breaking for the
Sherrington-Kirkpatrick (SK) model Mézard et al. [151], Derrida introduced the GREM; see [73,
76, 77]. This model has “designed” hierarchical correlations. Rigorous results on the GREM
at real inverse temperatures were obtained by Capocaccia et al. [50] and in a series of works
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by Bovier & Kurkova [39–41]. For a review of these results, we refer to Bovier & Kurkova [45]
and Bovier [43, Chapter 10]. The recent progress in rigorous understanding of the SK-type
models draws on the analysis of fluctuations in the GREM and their relation to the SK model;
see Panchenko [164] and Ruelle [174]. Using the non-rigorous replica method, Takahashi [183]
computed the log-partition function of the GREM at complex temperatures. In this chapter, we
rigorously confirm and extend the results of Takahashi [183].

2.1 the model

Figure 2.1: Sketch of the GREM tree with d = 2 levels and independent standard Gaussian random
variables ξ attached to the edges of the tree.

Following Derrida [73], given the tree depth d ∈N and the parameter n ∈N describing the
model size, consider the set of the tree leaves

Sn := {ε = (ε1, . . . , εd) ∈Nd : 1 ≤ ε1 ≤ Nn,1, . . . , 1 ≤ εd ≤ Nn,d}. (2.1)

In the tree underlying Sn, the branching numbers Nn,j (possibly) depend on the tree level j ∈
[d] := {1, . . . , d}. We assume that Nn,j grow exponentially in n, so that, for some given constants
αj > 1, j ∈ [d],

lim
n→∞

Nn,j

αn
j

= 1, αj > 1, j ∈ [d]. (2.2)

The GREM is based on the zero-mean Gaussian random field X = {Xε : ε ∈ Sn} indexed by Sn

and given by

Xε :=
√

a1 ξε1 +
√

a2 ξε1ε2 + . . . +
√

ad ξε1...εd , ε ∈ Sn (2.3)
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Figure 2.2: Simulation of the GREM field of energies X via random walks branching at the same
deterministic point in time (here t = 3, d = 2, a2 > a1). The field is given by the positions of
the random walkers at the right edge of the plot. Compare Figures 1.1 and 3.1. The idea for
the plot is adapted from Ouimet [163]

in terms of independent real standard normal random variables

ξ := {ξε1 ...ε j : 1 ≤ ε1 ≤ Nn,1, . . . , 1 ≤ ε j ≤ Nn,j, j ∈ [d]}. (2.4)

We can think of ξε1...ε j as of attached to the edge ε1 . . . ε j of the tree at the level j ∈ [d]1, see
Figure 2.1.

2.2 phase transitions

Under the assumption that the constants {σj}d+1
j=0 given by

σ0 := 0, σj :=

√
2 log αj

aj
, 1 ≤ j ≤ d, σd+1 := +∞ (2.5)

form an increasing sequence2, i.e.,

σ1 < . . . < σd, (2.6)

1 So, Xε is the sum of the independent Gaussian random variables ξε1,...,ε j with weights √aj, j ∈ [d] attached to the
edges along the path connecting the leaf ε ∈ Sn with the root of the tree.

2 In fact, (2.6) is a convexity assumption on the broken line connecting the points with abscissæ 0, a1 + . . . + aj
and ordinates 0, log α1 + . . . + log αj, j ∈ [d] respectively. It is natural to consider the GREM even without this
assumption, which was done in the seminal work of Bovier and Kurkova [40, 41]. It should be more or less
straightforward to extend the results of the present work to such setups. We are not concerned with this extension
here.
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Derrida and Gardner [77] heuristically derived the following formula for the limiting log-
partition function for the GREM as n→ ∞

p(β) := lim
n→∞

1
n

log ∑
ε∈Sn

exp
(

β
√

nXε

)
= β

m

∑
k=1

√
2ak log αk +

d

∑
k=m+1

(
log αk +

1
2

akβ2
)

, a.s.

(2.7)

where the inverse temperature parameter β ∈ [σm, σm+1), m ∈ {0, . . . , d}. This formula was
rigorously proved by Capocaccia et al. [50]; see Bovier and Kurkova [40] for much more.
Clearly, (2.7) implies that p(·) is non-analytic in any neighborhood of the set {σj}d

j=1. However,
for finite n ∈N, the log-partition function

pn(β) :=
1
n

log ∑
ε∈Sn

exp
(

β
√

nXε

)
, β ∈ R (2.8)

is analytic on R. Therefore, the points {σj}d
j=1 are called the critical inverse temperatures or the

points of phase transition.

Question 2.2.1. Why does the analyticity breaking (= phase transition) occur in the log partition
function (cf. (2.7)) as n→ ∞?

2.3 lee-yang approach to phase transitions

A classical way to answer Question 2.2.1 was suggested by Lee and Yang [138, 191] and
Fisher [89]: Show that {σj}d

j=1 are the accumulation points as n→ ∞ of the complex plane zeros
of the partition function

Zn(β) := ∑
ε∈Sn

eβ
√

nXε , β = σ + iτ ∈ C, σ, τ ∈ R. (2.9)

Therefore, even though the critical points {σj}d
j=1 ⊂ R themselves are never zeros of the

partition function for any n ∈ N3, they are a barrier for the analytic continuation of the log-
partition function, as there exist complex zeros of the partition function in any neighbourhood of
{σj}d

j=1.
The aim of this chapter is to give a detailed answer to Question 2.2.1 by

1. Identifying the distribution (=fluctuations) of the suitably rescaled Zn(β), β ∈ C as
n→ ∞.

2. Identifying the distribution of complex zeros of Zn(·), as n→ ∞.

3. Computing p(β) for all β ∈ C and thus identifying the full phase diagram.

2.4 limiting log-partition function

In this section, we provide a formula for the limiting log-partition function of the GREM at
complex temperatures. To understand this formula heuristically, consider a GREM with d levels

3 Zn(β) > 0, for any β ∈ R.
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Figure 2.3: Complex-β phase diagram of the REM with the partition function Z (k)
n (β); see Derrida [74]

for the original heuristics and Chapter 1 for rigorous results.

as a “superposition” of d independent random energy models. (Note that the random field Xε

which generates the partition function of the GREM, cf. (2.9), has strong correlations.) Namely,
with every level k = 1, . . . , d of the GREM we can associate a REM whose partition function is
given by

Z (k)
n (β) =

Nn,k

∑
j=1

eβ
√

nakη
(k)
j , 1 ≤ k ≤ d, (2.10)

where η
(k)
1 , η

(k)
2 , . . . , η

(k)
Nn,k

are independent real standard normal random variables. The complex
plane phase diagram of the REM was described by Derrida [74]; see also [123] for rigorous
proofs and more refined results. In the REM (2.10), there are three phases, see Figure 2.3, which
we will denote by

(a) Ek [Expectation Dominated Phase],

(b) Fk [Fluctuations Dominated Phase],

(c) Gk [“Glassy Phase" (= Extreme Values Dominated Phase)].

Analytically, these phases are specified as

Gk := {β ∈ C : 2|σ| > σk, |σ|+ |τ| > σk}, (2.11)

Fk := {β ∈ C : 2|σ| < σk, 2(σ2 + τ2) > σ2
k }, (2.12)

Ek := C\Gk ∪ Fk, (2.13)

where Ā denotes the closure of the set A (in the Euclidean topology). The phases Gk and Ek
intersect the real axis, while the phase Fk is special for the complex β case. By definition, the
sets Gk, Fk, Ek are open.
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Derrida [74], see Chapter 1 for a rigorous proof, computed the limiting log-partition func-
tion of the REM at complex β. Namely, for the limiting log-partition function of the REM
corresponding to the k-th level of the GREM,

pk(β) := lim
n→∞

1
n

log |Z (k)
n (β)| (2.14)

(where the limit is in probability), Derrida’s formula takes the form

pk(β) =


|σ|
√

2ak log αk, if β ∈ Ḡk,
1
2 log αk + akσ2, if β ∈ F̄k,

log αk +
1
2 ak(σ

2 − τ2), if β ∈ Ēk.

(2.15)

It is easy to check that the function pk is continuous and strictly positive. In particular, pk does
not have jumps on the boundaries of the phases. In Section 2.5, we provide heuristics behind
(2.15).

Our first result states that the limiting log-partition function of the GREM can be computed
as the sum of the limiting log-partition functions of the REM’s corresponding to the d levels of
the GREM:

Theorem 2.4.1 (Log-partition function, Free Energy). For every β ∈ C, the following limit exists in
probability and in Lq, for all q ≥ 1:

p(β) := lim
n→∞

1
n

log |Zn(β)| =
d

∑
k=1

pk(β), (2.16)

where pk(β) is the contribution of the k-th level, cf., (2.15).

Remark 2.4.1. Restricting (2.16) and (2.15) to the real temperature case β ≥ 0, we recover (2.7) which
was rigorously proved by Capocaccia et al. [50] and generalized by Bovier and Kurkova [40, 45].

2.5 heuristics

There are three natural guesses on the asymptotic behavior of Z (k)
n (β):

(a) [Expectation Dominated Phase] Z (k)
n (β) behaves approximately as its expectation; see

Figure 2.4, left. This guess turns out to be correct in phase Ek.

However, it can happen that the fluctuations of Z (k)
n (β) around its expectation are of larger

order than the expectation. In this case, we end up in the following regime:

(b) [Fluctuations Dominated Phase] Z (k)
n (β) behaves approximately as its standard deviation;

see Figure 2.4, right. This guess turns out to be correct in phase Fk.

Still, it can happen that due to the presence of heavy tails neither the expectation nor the
standard deviation are adequate to estimate the true magnitude of the partition function. In
this case, one can make the following guess:
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Expectation dominates. Fluctuations dominate.

Figure 2.4: Caricatures of the probability density of Z (k)
n (β) in the regimes with light tails.

(c) [Extremes Dominated Phase] Z (k)
n (β) behaves approximately as the maximal summand

in (2.10). This guess turns out to be correct in phase Gk.

Summarizing, we arrive at the following three guesses for the limiting log-partition function
pk(β) = limn→∞

1
n log |Z (k)

n (β)|:

[Expectation] pk(β) = lim
n→∞

1
n

log
∣∣∣EZ (k)

n (β)
∣∣∣ = log αk +

1
2

ak(σ
2 − τ2), (2.17)

[Fluctuations] pk(β) = lim
n→∞

1
n

log
√

VarZ (k)
n (β) =

1
2

log αk + akσ2, (2.18)

[Extremes] pk(β) = lim
n→∞

1
n

log max
j∈{1,...,Nn,k}

∣∣∣∣eβ
√

nakη
(k)
j

∣∣∣∣ = |σ|√2ak log αk. (2.19)

It turns out that these formulae indeed give the correct value of pk(β) in phases Ek, Fk, Gk,
respectively, cf., (2.15).

2.6 phase diagram

We can now describe the phase diagram of the GREM in the complex β plane; see Figure 2.5. It
is obtained as a superposition of the phase diagrams of the corresponding REM’s. Take some
β ∈ C. For every k = 1, . . . , d, we can determine the phase (Gk, Fk, or Ek) to which β belongs
and write the result in form of a sequence of length d over the alphabet {G, F, E}. However, it
is easy to see that only phases of the following form are possible:

Gd1 Fd2 Ed3 = G . . . G︸ ︷︷ ︸
d1

F . . . F︸ ︷︷ ︸
d2

E . . . E︸ ︷︷ ︸
d3

, (2.20)

where d1, d2, d3 ∈ {0, . . . , d} are such that d1 + d2 + d3 = d. In other words, we have an ordering
of the level phases which can symbolically be expressed as

G � F � E. (2.21)
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Figure 2.5: Phase diagram of a GREM with d = 4 levels in the complex β plane. Only the quarter-plane
σ ≥ 0, τ ≥ 0 is shown. Darker regions have larger density of partition function zeros.

For example, it is not possible that a level in E-phase is followed by a level in F- or in G-phase.
This stems from the fact that if β ∈ Ek for some k, then β /∈ Fl and β /∈ Gl for l ≥ k. This
ordering of phases agrees with the observation of Saakian [175]. The phases of the GREM are
therefore given by

Gd1 Fd2 Ed3 = (G1 ∩ . . . ∩ Gd1) ∩ (Fd1+1 ∩ . . . ∩ Fd1+d2) ∩ (Ed1+d2+1 ∩ . . . ∩ Ed),

where d1, d2, d3 ∈ {0, . . . , d} are such that d1 + d2 + d3 = d. If β ∈ Gd1 Fd2 Ed3 , then we say that
the levels 1, . . . , d1 are in the G-phase, the levels d1 + 1, . . . , d1 + d2 are in the F-phase, and the
levels d1 + d2 + 1, . . . , d are in the E-phase.

Note that each Gd1 Fd2 Ed3 is an open subset of the complex plane and the union of the closures
of these sets is the entire complex plane. Hence, phases (2.20) provide the complete phase
diagram of the GREM. The total number of phases is 1

2 (d + 1)(d + 2). Only d + 1 of these
phases, namely those of the form Gd1 Ed3 , intersect the real axis. Therefore, on the real inverse
temperature axis, there are only d + 1 phases “visible” which certainly agrees with what is
known about the GREM at real temperatures.

2.7 macroscopic limiting distribution of complex zeros

Using Theorem 2.4.1, it is possible to obtain the limiting distribution of complex zeros of the
GREM partition function Zn(β).

For the partition function of the REM Z (k)
n (β), the limiting distribution of zeros has been

heuristically computed by Derrida [74]; see Chapter 1 for rigorous results. The main idea is to
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use the Poincaré-Lelong formula (see, e.g., [111, p. 2.4.1]). It states that the measure counting
the complex zeros of any analytic function f (which is not everywhere 0) can be represented as

Zeros{ f (β) : β ∈ C} = 1
2π

∆ log | f (β)|. (2.22)

Here, ∆ = ∂2

∂σ2 +
∂2

∂τ2 is the Laplace operator in the complex β-plane. The Laplace operator
should be understood in the sense of generalized functions (= distributions). Applying this
formula to Z (k)

n (β), dividing by n, interchanging the large n limit and the Laplacian (which
should be justified), and using (2.14), one can show, see [123], that weakly on M(C)4,

1
n

Zeros{Z (k)
n (β) : β ∈ C} w−→

N→∞

1
2π

∆pk. (2.23)

The distributional Laplacian of pk is a measure Ξk on C given by

Ξk := ∆pk = ΞF
k + ΞEF

k + ΞEG
k , (2.24)

where ΞF
k , ΞEF

k , ΞEG
k are measures on the complex plane defined as follows:

(a) ΞF
k is 2ak times the two-dimensional Lebesgue measure restricted to Fk.

(b) ΞEF
k is

√
ak log αk times the one-dimensional length measure on the boundary between

Ek and Fk (which consists of two circular arcs).

(c) ΞEG
k is a measure having the density

√
2ak|τ| with respect to the one-dimensional length

measure restricted to the boundary between Ek and Gk (which consists of four line
segments).

Thus, the zeros of Z (k)
n (β) fill the two-dimensional region Fk asymptotically uniformly with

density 2akn, but some zeros concentrate around the boundary of Ek with one-dimensional
density asymptotically proportional to n. The term ΞF

k is just the pointwise Laplacian of pk,
whereas the terms ΞEF

k and ΞEG
k appear because the normal derivative of the function pk has

a jump discontinuity on the boundary of the phase Ek. On the boundary between Fk and Gk,
the normal derivative of pk is continuous, hence this boundary makes no one-dimensional
contribution to Ξ.

We now proceed to the complex zeros of Zn(β). In view of Theorem 2.4.1, it is not surprising
that the limiting distribution of zeros of Zn(β) can be obtained as a superposition of the limiting
zeros distributions of the corresponding REM’s.

Theorem 2.7.1 (Global Distribution of Zeros). The following convergence of random measures holds
weakly on M(C):

1
n

Zeros{Zn(β) : β ∈ C} w−→
N→∞

1
2π

Ξ, (2.25)

where Ξ = ∆p = ∑d
k=1 Ξk.

4 M(C) denotes the space of locally finite measures on C. We endow M(C) with the vague topology.
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2.8 functional limit theorems and local structure of ze-
ros

One may ask whether the partition function Zn(β) converges, weakly on a suitable function
space, to some limiting random analytic function. In this section, we state functional central
limit theorems (FCLT) of this type. In order to obtain a non-trivial functional convergence, we
have to rescale the partition function appropriately.

truncated expectation dominated phase. We focus on the truncated expectation domi-
nated phase defined by

Ê :=
{

β = σ + iτ ∈ C : |σ| < σ1

2
, |β| < σ1√

2

}
, (2.26)

Theorem 2.8.1 (Functional LLN on Ê). The following convergence of random analytic functions holds
weakly on H(Ê):

Zn(β)

EZn(β)
w−→

N→∞
1. (2.27)

We immediately obtain

Corollary 2.8.1 (Absence of Zeros in Ê). The following weak convergence of point processes on N (Ê)
holds:

Zeros{Zn(β) : β ∈ Ê} w−→
N→∞

∅. (2.28)

Here, ∅ denotes the empty point process on Ê.

In the next theorem, we will obtain more refined results than in Theorem 2.8.1 by a “better”
choice of normalization. Essentially, we describe the limiting fluctuations of Zn(β) around
its expected value EZn(β). The limiting fluctuations are given by the planar Gaussian analytic
function X; see [111, 182]. It is a random analytic function {X(t) : t ∈ C} given by

X(t) = e−
t2
2

∞

∑
k=0

Nk
tk
√

k!
, (2.29)

where N1, N2, . . . ∼ NC(0, 1) are independent complex standard Gaussian random variables.
The finite-dimensional distributions of X are multivariate complex Gaussian distributions and
the second-order structure of X is given by

EX(t) = 0, E[X(t1)X(t2)] = 0, E[X(t1)X(t2)] = e−
1
2 (t1−t̄2)

2
, t1, t2 ∈ C. (2.30)

The restriction of X to R is a stationary complex Gaussian process. The factor e−t2/2 in (2.29)
is chosen to simplify the statements of our results and is usually not used in the literature.
The set of complex zeros of X is a remarkable stationary point process; see Figure 2.6, left. The
intensity of this point process is π−1, that is for every Borel set B ⊂ C we have

E

[
∑
z∈B

1X(z)=0

]
=

1
π

Leb(B). (2.31)
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Zeros of the plane Gaussian Analytic Function.
Note the stationarity of the distribution of zeros.

“Curve of zeros” seen locally. The dotted line is the
boundary between the phases. Note the

“periodicity” of zeros.

Figure 2.6: Point processes of zeros.

For more information on the zeros of X, we refer to [111, 182].

We are ready to state the functional central limit theorem in the domain Ê. Define normalizing
functions ĝn(β∗; t), with t ∈ C, by

ĝn(β∗; t) :=
(

1
2

log Nn,1 + a1(
√

nσ∗ + t)2
)
+

d

∑
l=2

(
log Nn,l +

1
2

al(
√

nβ∗ + t)2
)

. (2.32)

Theorem 2.8.2 (FCLT on Ê). Fix β∗ = σ∗ + iτ∗ ∈ Ê with τ∗ 6= 0. Then, the following convergence of
random analytic functions holds weakly on H(C):{

e−ĝn(β∗;t)
(
Zn

(
β∗ +

t√
n

)
−EZn

(
β∗ +

t√
n

))
: t ∈ C

}
w−→

N→∞
{X(
√

a1t) : t ∈ C}, (2.33)

where {X(t) : t ∈ C} is the plane Gaussian analytic function (2.29).

Remark 2.8.1. In the case of real β∗ ∈ (− σ1
2 , σ1

2 ), an analogue of Theorem 2.8.2 is valid, but the
limiting process is {XR(

√
a1t) : t ∈ C}, where the random analytic function XR is the real analogue of

X defined by

XR(t) = e−
t2
2

∞

∑
k=0

Nk
tk
√

k!
, (2.34)

where N1, N2, . . . ∼ NR(0, 1) are independent real standard Gaussian random variables.
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2.9 poisson cascade zeta function

The fluctuations of Zn(β) in phases of the form Gd1 Fd2 Ed3 with d1 > 0 (at least one glassy
level) will be described using a random zeta function associated to the Poisson cascades. In
this section, we define this function and state results on its meromorphic continuation.

Let P1, P2, . . . be the points of a unit intensity Poisson point process on (0, ∞). The points are
always arranged in an increasing order: 0 < P1 < P2 < . . .. The Poisson process zeta function is
defined by

ζP(z) =
∞

∑
k=1

P−z
k , Re z > 1. (2.35)

With probability 1, the above series converges absolutely and uniformly on compact subsets
of the half-plane {Re z > 1} since limk→∞ Pk/k = 1 a.s. by the law of large numbers. So,
ζP is an analytic function on the half-plane {Re z > 1}, a.s. Moreover, with probability 1,
the function ζP admits a meromorphic continuation to the half-plane {Re z > 1/2}. Namely,
by [123, Theorem 2.6], with probability 1, we have

∑
Pk≤T

P−z
k −

∫ T

1
t−zdt −→

T→∞
ζP(z)−

1
z− 1

on H ({Re z > 1/2}) , (2.36)

where H(D) denotes the space of analytic functions on a domain D endowed with the topology
of locally uniform convergence.

We will need a multivariate generalization of the Poisson process zeta function which will
be called the Poisson cascade zeta function. First, we need to define the Poisson cascade point
processes; see Figure 2.7. These and related point processes appeared for example in [40],
[174]. Fix dimension d ∈ N. Start with a unit intensity Poisson point process ∑∞

i=1 δ(Pi) on
(0, ∞). Then, for every m = 1, . . . , d− 1 and every ε1, . . . , εm ∈ N let ∑∞

i=1 δ(Pε1...εmi) be a unit
intensity Poisson point process on (0, ∞). Assume that all point processes introduced above
are independent. Consider the following point process Π on (0, ∞)d,

Π = ∑
ε=(ε1,...,εd)∈Nd

δ(Pε1 , Pε1ε2 , . . . , Pε1 ...εd). (2.37)

Of course, Π is not a Poisson process (unless d = 1) since Π contains infinitely many collinear
points with probability 1. The next lemma states that Π has the same first order intensity as
the homogeneous Poisson process on (0, ∞)d. It can easily be proven by induction over d.

Lemma 2.9.1. Let ϕ be an integrable or non-negative function on (0, ∞)d. Then,

E

[
∑

x∈Π
ϕ(x)

]
=
∫
(0,∞)d

ϕ(x)dx. (2.38)

The random zeta function ζP associated to the Poisson cascade point process Π is a stochastic
process defined by the series

ζP(z1, . . . , zd) = ∑
ε∈Nd

P−z1
ε1

P−z2
ε1ε2

. . . P−zd
ε1 ...εd . (2.39)
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Figure 2.7: Poisson cascade point process.
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Theorem 2.9.1 (Domain of ζP). With probability 1, the series (2.39) converges absolutely and uni-
formly on any compact subset of the domain

D := {(z1, . . . , zd) ∈ Cd : Re z1 > . . . > Re zd > 1}. (2.40)

In particular, the function ζP is analytic on D with probability 1.

Theorem 2.9.1 would be sufficient to treat the GREM at real inverse temperature β, as in [40].
However, for complex β, we need a meromorphic continuation of ζP to a larger domain.

Theorem 2.9.2 (Meromorphic Continuation of ζP). With probability 1, the function ζP(z1, . . . , zd)

defined originally on D admits a meromorphic continuation to the domain

1
2
D = {(z1, . . . , zd) ∈ Cd : Re z1 > . . . > Re zd > 1/2}. (2.41)

Moreover, the function (zd − 1)ζP(z1, . . . , zd) is analytic on 1
2D with probability 1.

We conjecture that with probability 1 there is no meromorphic continuation beyond 1
2D. In

the sequel, we use the notation z = (z1, . . . , zd) ∈ Cd.

Remark 2.9.1. The value of (zd − 1)ζP(z) in the case zd = 1 is understood by continuity. In the case
d = 1, this value is equal to 1 a.s., whereas, for d ≥ 2, it is a non-degenerate random variable. (The
non-degeneracy follows from the fact that a degenerate random variable cannot satisfy (2.42), see below,
with Re z1 > zd = 1).

Proposition 2.9.1 (Stability of ζP). Consider m ∈ N independent copies of the random analytic
function {(zd − 1)ζP(z) : z ∈ 1

2D} denoted by {(zd − 1)ζ(j)
P (z) : z ∈ 1

2D}, 1 ≤ j ≤ m. Then, the
following distributional equality on H( 1

2D) holds:{
m

∑
j=1

(zd − 1)ζ(j)
P (z) : z ∈ 1

2
D
}

d
=

{
mz1(zd − 1)ζP(z) : z ∈ 1

2
D
}

. (2.42)

From Proposition 2.9.1, we can draw several conclusions about the finite-dimensional dis-
tributions of ζP. If z ∈ 1

2D ∩Rd, then the distribution of the real-valued random variable
(zd − 1)ζP(z) is stable with exponent 1/z1; see [178, Chapter 1]. In fact, it is even strictly stable
meaning that no additive constant is needed in (2.42). If z ∈ 1

2D is such that z1 ∈ R (but
z2, . . . , zd are not necessarily real), then the term mz1 is real and hence, (zd − 1)ζP(z) (which is
considered as a random vector with values in C ≡ R2) has a two-dimensional stable distribution
(which need not be isotropic); see [178, Chapter 2]. In general, for z ∈ 1

2D without any addi-
tional assumptions on the components, the distribution of the random variable (zd − 1)ζP(z)
(again considered as a random vector with values in C ≡ R2) is strictly complex stable in
the sense of Hudson and Veeh [112]. A random variable with values in C is called strictly
complex stable, see [112], if for every m ∈N the sum of m independent copies of this random
variable, after dividing it by an appropriate complex number, has the same law as the original
random variable. More generally, all finite-dimensional distributions of the stochastic process
{(zd − 1)ζP(z) : z ∈ 1

2D} are strictly operator stable (and hence, infinitely divisible). Recall that a
random vector with values in Rk is called strictly operator stable, if for every m ∈N the sum
of m copies of this random vector, after applying to it an appropriate linear transformation
of Rk, has the same law as the original random vector; see [147, Definition 3.3.24]. The same
conclusions apply to the random variable ζP(z) and the stochastic process {ζP(z) : z ∈ 1

2D} if
we additionally assume that zd 6= 1.
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Proposition 2.9.2 (Moments of ζP). Let 0 < p < 2 and z ∈ 1
2D.

(1) If Re z1 < 1
p , then E|(zd − 1)ζP(z)|p < ∞.

(2) If Re z1 > 1
p , then E|(zd − 1)ζP(z)|p = ∞ (unless d = 1 and z = 1).

2.10 fluctuations of the partition function

In this section, we aim to describe the limiting fluctuations of Zn(β). First, we need to introduce
several normalizing sequences. For each 1 ≤ k ≤ d, let {un,k}n∈N be a real sequence satisfying

Nn,k ∼n→∞

√
2πun,ke

1
2 u2

n,k . (2.43)

Equivalently, we can choose

un,k =
n→∞

√
2 log Nn,k −

log(4π log Nn,k) + o(1)
2
√

2 log Nn,k
∼

n→∞

√
2n log αk = σk

√
nak. (2.44)

It is a well-known fact from extreme value theory, see [136, Theorem 1.5.3], that if η1, η2, . . . are
independent real standard Gaussian random variables, then

un,k

(
max

i=1,...,Nn,k
ηi − un,k

)
w−→

N→∞
e−e−x

. (2.45)

Let β ∈ C be located inside (but not on the boundary) of some phase Gd1 Fd2 Ed3 and let σ ≥ 0.
For 1 ≤ k ≤ d, to scale the k-th level of the GREM, we define a sequence of functions cn,k(β) by

cn,k(β) :=


β
√

nak un,k, if β ∈ Gk,
1
2 log Nn,k + akσ2n, if β ∈ Fk,

log Nn,k +
1
2 akβ2n, if β ∈ Ek.

(2.46)

Then, define a normalizing function cn(β) by

cn(β) := cn,1(β) + . . . + cn,d(β). (2.47)

The next theorem describes the fluctuations of Zn(β) inside the phases. The boundary cases
will be studied in detail later.

Theorem 2.10.1 (Fluctuations of the Partition Function). Let β ∈ Gd1 Fd2 Ed3 and let σ ≥ 0. Then,

Zn(β)

ecn(β)

w−→
N→∞



1, if d1 = 0 and d2 = 0,

NC(0, 1), if d1 = 0 and d2 > 0,

ζP(
β
σ1

, . . . , β
σd1

), if d1 > 0 and d2 = 0,

cSσ1/σ, if d1 > 0 and d2 > 0.

(2.48)

Here, ζP is the Poisson cascade zeta function; Sα is the rotationally invariant, complex standard α-stable
random variable with characteristic function E

[
ei Re(Sα z̄)

]
= e−|z|

α
, z ∈ C, where α ∈ (0, 2); and c is a

constant.
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Proof. We will establish stronger results below. The case d1 = 0, d2 = 0 follows from Theo-
rem 2.11.1. The case d1 > 0, d2 = 0 follows from Theorem 2.11.4 below. The case d1 > 0, d2 > 0
follows from Theorem 2.11.5 (with t = 0) below.

Remark 2.10.1. In the case d1 = d2 = 0 (i.e., β ∈ Ed = E1), the limit in (2.48) is degenerate. Under
a more refined normalization, it can be that Zn(β) has Gaussian limiting fluctuations in the cases
β ∈ E1 ∩ {|σ| < σ1

2 } and |σ| = σ1
2 . The fluctuations in the case β ∈ E1 ∩ {|σ| > σ1

2 } are non-Gaussian
and will be identified in Theorem 2.11.3 below.

Remark 2.10.2. The assumption σ ≥ 0 in Theorem 2.10.1 can be removed if we define

cn,k(β) := (sgn σ) · β
√

nak un,k, for β ∈ Gk. (2.49)

2.11 functional limit theorems and local structure of ze-
ros

In this section, we state the results on the weak functional convergence of the rescaled partition
function Zn(β) to some limiting random analytic function. Since weak convergence of random
analytic functions implies weak convergence of point processes of zeros any functional limit
theorem of this type implies a result on the local structure of zeros of Zn(β).

phase E1 = Ed The first result is a functional law of large numbers in the purely expectation
dominated phase E1 = Ed .

Theorem 2.11.1 (Functional LLN for the Partition Function in E1). The following convergence of
random analytic functions holds weakly on H(E1 ):

Zn (β)

EZn (β)
w−→

N→∞
1. (2.50)

Denote by N (D) the space of locally finite point measures on a locally compact metric space
D. We endow N (D) with the topology of vague convergence.

Corollary 2.11.1 (Absence of Zeros in E1). The following weak convergence of point processes on
N (E1 ) holds:

Zeros{Zn (β) : β ∈ E1}
w−→

N→∞
∅ . (2.51)

Here, ∅ denotes the empty point process on E1.

The above corollary follows from Theorem 2.11.1. In fact, we will prove much more: The
probability that the partition function Zn has a zero in any fixed compact set K ⊂ E1 decays
exponentially.

Theorem 2.11.2 (Absence of Zeros in the Expectation Phase). Let K be a compact subset of E1.
Then, there exist C = C(K) and ε = ε(K) > 0 such that for all n ∈ N,

P [∃β ∈ K : Zn (β) = 0 ] < Ce−εn . (2.52)
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It is natural to ask whether results more refined than Theorem 2.11.1 (where the limiting
process is degenerate) can be obtained by a “better” choice of normalization. Functional
limit theorems with Gaussian fluctuations in the strip |σ | < σ1

2 can be obtained. Here, we
concentrate on the case |σ | > σ1

2 where the fluctuations are non-Gaussian. The next result
states that in the domain E1 ∩ {σ > σ1

2 } the limiting fluctuations of Zn (β) are given by the
Poisson zeta function. Recall the definition of cn ,k (β) from (2.46) and define

c̃n (β) := cn ,2 (β) + . . . + cn ,d (β) . (2.53)

Theorem 2.11.3 (Non-Gaussian Fluctuations in the Beak-shaped Part of E1). The following
convergence of random analytic functions holds weakly on H(E1 ∩ {σ > σ1

2 }):

Zn (β) − EZn (β)

eβ
√

na1 un ,1+ c̃n (β)

w−→
N→∞

ζ P

(
β

σ1

)
. (2.54)

Remark 2.11.1. By symmetry, the following convergence of random analytic functions holds weakly on
H(E1 ∩ {σ < − σ1

2 }):

Zn (β) − EZn (β)

e−β
√

na1 un ,1+ c̃n (β)

w−→
N→∞

ζ−P

(
− β

σ1

)
, (2.55)

where ζ−P is a copy of ζ P . In fact, one can even show that the functional limit theorem holds on the union
of both domains, namely E1 ∩ {|σ | > σ1

2 }, and that the limiting functions ζ P and ζ−P are independent;
see Remark 2.11.2 for explanation.

phases of the form Gd1 Ed3 In the next theorem, we prove the functional convergence
of the partition function Zn (β) in the phases of the form Gd1 Ed3 , where d1 , d3 ∈ {0, . . . , d}
satisfy d1 + d3 = d. The limiting process is given in terms of the d1-variate Poisson cascade
zeta function ζ P . Recall that cn (β) was defined in (2.47). For 1 ≤ l ≤ d, define

T l (β) :=
(

β

σ1
, . . . ,

β

σl

)
∈ C l , T0 (β) := ∅ . (2.56)

Theorem 2.11.4 (Non-Gaussian fluctuations in G E-phases). Fix some d1 , d3 ∈ {0, . . . , d}
such that d1 + d3 = d. The following convergence of random analytic functions holds weakly on
H(Gd1 Ed3 ∩ {σ > 0}):

Zn (β)

ecn (β)

w−→
N→∞

ζ P

(
T d1 (β)

)
. (2.57)

In particular, for d1 = 0, the limiting process is ζ P (∅) = 1, and we recover Theorem 2.11.1.
If the case of real β (and without functional convergence), the result of Theorem 2.11.4 is
contained in Bovier and Kurkova [40, Theorem 1.7].

Remark 2.11.2. Let d1 ≥ 1. By symmetry, a result similar to Theorem 2.11.4 holds in the domain
Gd1 Ed3 ∩ {σ < 0}. Namely, the following convergence of random analytic functions holds weakly on
H(Gd1 Ed3 ∩ {σ < 0}):

Zn (β)

ecn (−β)

w−→
N→∞

ζ−P

(
T d1 (−β)

)
, (2.58)
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where ζ−P is a copy of ζ P . One can show that (2.57) and (2.58) can be combined into a joint convergence
in the phase Gd1 Ed3 and that the limiting functions ζ P and ζ−P are independent, for d1 ≥ 1. We will
not provide a complete proof of the independence, but let us explain the idea. The function ζ P in (2.57)
appears as the contribution of the upper extremal order statistics among the energies on the first d1

levels of the GREM, whereas all other levels make a deterministic contribution equal to the expectation.
The function ζ−P in (2.58) appears as the contribution of the lower extremal order statistics on the first
d1 levels of the GREM. Since upper and lower extremal order statistics become independent in the large
sample limit, the limiting functions ζ P and ζ−P are independent.

Since weak convergence of random analytic functions implies weak convergence of their
zero sets, Theorem 2.11.4 yields the following

Corollary 2.11.2 (Local Distribution of Zeros in G E-phases). Under the same conditions as in
Theorem 2.11.4, the following weak convergence of point processes on N (Gd1 Ed3 ∩ {σ > 0}) holds:

Zeros{Zn (β)} w−→
N→∞

Zeros
{

ζ P

(
T d1 (β)

)}
. (2.59)

Note that the intensity of zeros in the limiting point process is O(1) as n → ∞ and hence
these zeros do not appear in the limit in Theorem 2.7.1. For d1 = 0, the limiting point process
of zeros is empty and we recover Corollary 2.11.1.

phases with at least one fluctuation level Our next result is a functional limit theo-
rem describing the limiting structure of the random analytic function Zn (β) in an infinitesimal
window around some β∗ = σ∗ + iτ∗ ∈ Gd1 Fd2 Ed3 , where d2 ≥ 1. The phases we consider
have at least one fluctuation level, see the shaded regions on Figure 2.5. In the case when
d1 = 0 (there are no glassy levels), the limiting fluctuations are in terms of the so-called plane
Gaussian analytic function X a remarkable object that appeared for example in Hough et al. [111]
and Sodin & Tsirelson [182].

For a given β∗ ∈ Gd1 Fd2 Ed3 consider the following sequence of normalizing functions
cn (β∗ ; t) that are quadratic in t ∈ C and extend cn (β∗ ), see (2.46) and (2.47), in the sense that
cn (β∗ ; t) = cn (β∗ ):

cn (β∗ ; t) :=
(

β∗ +
t√
n

) d1

∑
j=1

√
na j un , j+

+
d1+d2

∑
j=d1+1

(
1
2

log Nn , j + a j (
√

nσ∗ + t)2
)
+

d

∑
j=d1+d2+1

(
log Nn , j +

1
2

a j (
√

n β∗ + t)2
)

.

(2.60)

Theorem 2.11.5 (Fluctuations in Phases with F-levels). Fix some d1 , d2 , d3 ∈ {0, . . . , d} with
d1 + d2 + d3 = d and d2 ≥ 1. Also, fix some β∗ = σ∗ + iτ∗ ∈ Gd1 Fd2 Ed3 such that σ∗ ≥ 0.
Then, the following convergence of random analytic functions holds weakly on H(C):{

e−cn (β∗ ;t)Zn

(
β∗ +

t√
n

)
: t ∈ C

}
w−→

N→∞

{√
W X(κ t) : t ∈ C

}
, (2.61)

where
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(1) W = ζ P (2T d1 (σ∗ )) and ζ P is the Poisson cascade zeta function with d1 variables;

(2) {X( t) : t ∈ C} is the plane Gaussian analytic function (2.29);

(3) κ2 = ∑d2
k=1 ad1+k is the total variance of the GREM levels which are in the fluctuation phase;

(4) the processes ζ P and X are independent.

The term X(κ t) represents the contribution of the F-levels, the term
√

W is the contribution
of the G-levels, whereas the contribution of the E-levels is deterministic and is contained in the
normalization sequence cn (β∗ ; t). If d1 = 0 (i.e., there are no levels in the glassy phase), then
the limit is the Gaussian analytic function X(κ t) since we have ζ P (∅) = 1. In the case d1 6= 0,
the limiting process is a Gaussian process rescaled by the square root of an independent real

σ1
2σ∗

-stable random variable W = ζ P (2T d1 (σ∗ )) with skewness parameter +1. Such a process
is itself complex σ1

σ∗
-stable with complex isotropic margins. Processes of this type are called

subgaussian; see Samorodnitsky & Taqqu [178].

Corollary 2.11.3 (Local Distribution of Zeros in Phases with F-levels). Under the same conditions
as in Theorem 2.11.5, the following convergence of the point processes of zeros holds weakly on N (C):

Zeros
{
Zn

(
β∗ +

t√
n

)
: t ∈ C

}
w−→

N→∞
Zeros {X(κ t) : t ∈ C} . (2.62)

Given that the intensity of complex zeros of {X(κ t) : t ∈ C} is π−1 κ2, Corollary 2.11.3
suggests that in phase Gd1 Fd2 Ed3 with d2 ≥ 1 the density of complex zeros of Zn should be
asymptotic to π−1 κ2 n. This is indeed true; see Section 2.7.

2.12 curves of zeros

Beginning with this section, we investigate the behavior of the partition function Zn (β) in
infinitesimal windows located near the boundaries of the phases. Our results shed light on an
interesting phenomenon, the curves of zeros, observed by Derrida [74] in the context of the REM.

beak shaped boundaries. We start by considering the boundary between two G E-phases
of the form G l−1 Ed− l+1 and G l Ed− l , where 1 ≤ l ≤ d; see Figure 2.5. In phase G l−1 Ed− l+1 ,
the fluctuations of Zn (β) are given by an ( l − 1)-variate Poisson cascade zeta function,
whereas in phase G l Ed− l the fluctuations are given by an l-variate zeta function; see Theo-
rem 2.11.4. Near the boundary between these two phases, under an appropriate scaling, both
functions become “visible” in the limit.

Theorem 2.12.1 (Fluctuations Near the Beak-shaped Boundaries Between G E-phases). Fix some
1 ≤ l ≤ d and some β∗ = σ∗ + iτ∗ ∈ C such that σ∗ >

σl
2 , τ∗ > 0 and σ∗ + τ∗ = σl . Then, there

exist a complex sequence dn , l = O( log n) and a sequence of functions hn , l ( t) (which are quadratic
functions in t) such that weakly on H(C) it holds that{

e−hn , l ( t)Zn

(
β∗ +

dn , l + t
a l (β∗ − σl )n

)
: t ∈ C

}
w−→

N→∞

{
e t ζ ( l−1) + ζ ( l ) : t ∈ C

}
. (2.63)
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Here, (ζ ( l−1) , ζ ( l ) ) is a random vector given by

(ζ ( l−1) , ζ ( l ) ) =
(

ζ P

(
T l−1 (β∗ )

)
, ζ P

(
T l (β∗ )

))
. (2.64)

In (2.64), both ζ ( l−1) and ζ ( l ) are based on the same Poisson cascade point process.

We will not provide exact expressions for dn , l and hn , l ( t) (which are too complicated to be
stated here). Theorem 2.12.1 allows us to clarify the local structure of the line of zeros near the
beak shaped boundary between the phases G l−1 Ed− l+1 and G l Ed− l .

Corollary 2.12.1 (Local distribution of zeros near the beak shaped boundaries between G E-phases).
Under the same conditions as in Theorem 2.12.1, the following convergence of point processes holds
weakly on N (C):

Zeros
{
Zn

(
β∗ +

dn , l + t
a l (β∗ − σl )n

)
: t ∈ C

}
w−→

N→∞
∑

k∈Z

δ

(
log

(
− ζ ( l−1)

ζ ( l )

)
+ 2π i k

)
.

(2.65)

It follows that the zeros of Zn (β) in a neighborhood of β∗ look locally like equally spaced
points on a line parallel to the boundary between G l−1 Ed− l+1 and G l Ed− l ; see Figure 2.6,
right. The spacing between neighboring zeros is

√
2π

a l τ∗
· 1

n
+ o

(
1
n

)
, n → ∞ . (2.66)

This agrees with what one expects from the definition of the measure ΞEG
l ; see Section 2.7.

From the formula for dn , l , it can be seen that the zeros are located outside the phase E l , the
distance to the boundary being of order const · log n

n . One may ask what happens if we drop
the sequence dn , l and look at Zn (β) in a window of size 1

n near some β∗ located on the
beak shaped boundary. The zeros are not visible in this regime and only the term ζ ( l−1) (the
contribution of the inner phase G l−1 Ed− l+1) is present in the fluctuations.

curves of zeros: arc-shaped boundaries In the next theorem, we describe the local
structure of the partition function Zn (β) in an infinitesimal window around some β∗ =

σ∗ + iτ∗ located on the arc separating the phases Gd1 Fd2 Ed3 and Gd1 Fd2−1 Ed3+1, where
d2 ≥ 1. We assume that

σd1

2
< σ∗ <

σd1+1

2
, τ∗ > 0, σ2

∗ + τ2
∗ =

σ2
d1+d2

2
. (2.67)

Consider the following sequence of normalizing functions (which are linear in t ∈ C):

f n (β∗ ; t) :=
(

β∗ +
t
n

) d1

∑
j=1

√
na j un , j+

+
d1+d2

∑
j=d1+1

(
1
2

log Nn , j + a j σ
2
∗ n
)
+

d

∑
j=d1+d2+1

(
log Nn , j +

1
2

a j β2
∗n
)

. (2.68)
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Theorem 2.12.2 (Fluctuations on the Arc-shaped Boundaries between Phases with F-levels). Fix
some d1 , d2 , d3 ∈ {0, . . . , d} with d1 + d2 + d3 = d and d2 ≥ 2. Also, fix some β∗ = σ∗ + iτ∗ ∈
C satisfying (2.67). Then, the following convergence of random analytic functions holds weakly on
H(C):{

e− f n (β∗ ;t)Zn

(
β∗ +

t
n

)
: t ∈ C

}
w−→

N→∞

{√
W (eλ ′ t N ′ + eλ ′ ′ t N ′ ′ ) : t ∈ C

}
, (2.69)

where

(1) W = ζ P (2T d1 (σ∗ )), and ζ P is the Poisson cascade zeta function with d1 variables;

(2) N ′ , N ′ ′ ∼ NC (0, 1) are independent complex standard normal random variables;

(3) λ ′ , λ ′ ′ are constants given in Remark 2.12.1 below;

(4) the random variable W and the random vector (N ′ , N ′ ′ ) are independent.

Remark 2.12.1. Define the “partial variances” A l ,m = a l + . . . + am for 1 ≤ l ≤ m ≤ d and let
A l ,m = 0 if l > m. The constants λ ′ and λ ′ ′ are given by

λ ′ = 2σ∗Ad1+1,d1+d2 + β∗Ad1+d2+1,d ,

λ ′ ′ = 2σ∗Ad1+1,d1+d2−1 + β∗Ad1+d2 ,d .
(2.70)

Note that λ ′ − λ ′ ′ = β̄ad1+d2 .

Corollary 2.12.2 (Zeros on the Arc-shaped Boundaries between Phases with F-levels). Under
the same conditions as in Theorem 2.12.2, we have the following weak convergence of point processes on
N (C):

Zeros
{
Zn

(
β∗ +

t
n

)
: t ∈ C

}
w−→

N→∞
∑

k∈Z

δ

(
1

β̄ad1+d2

(
log

(
− N ′ ′

N ′

)
+ 2π i k

))
.

(2.71)

In the case d2 = 1, we have a slightly different result. Let f n (β∗ ; t) be given by the same
formula as above; see (2.68).

Theorem 2.12.3 (Fluctuations on the Arc-shaped Boundaries of G E-phases). Fix some d1 , d2 , d3 ∈
{0, . . . , d} with d1 + d2 + d3 = d and d2 = 1. Also, fix some β∗ = σ∗ + iτ∗ ∈ C satisfying (2.67).
Then, the following convergence of random analytic functions holds weakly on H(C):{

e− f n (β∗ ;t)Zn

(
β∗ +

t
n

)
: t ∈ C

}
w−→

N→∞

{
eλ ′ t
√

W N + eλ ′ ′ t ζ (d1 ) : t ∈ C
}

, (2.72)

where

(1) W = ζ P (2T d1 (σ∗ )) and ζ (d1 ) = ζ P (T d1 (β∗ )), where in both cases the zeta function ζ P is
based on the same Poisson cascade point process;

(2) N ∼ NC (0, 1) is a complex standard normal random variable;

(3) λ ′ and λ ′ ′ are constants given in Remark 2.12.1;
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(4) the random vector (W , ζ (d1 ) ) and the random variable N are independent.

Corollary 2.12.3 (Zeros on the Arc-shaped Boundaries of G E-phases). Under the same conditions
as in Theorem 2.12.3, we have the following weak convergence of point processes on N (C):

Zeros
{
Zn

(
β∗ +

t
n

)
: β ∈ C

}
w−→

N→∞
∑

k∈Z

δ

(
1

β̄∗ ad1+1

(
log

(
− ζ (d1 )

√
W N

)
+ 2π i k

))
.

(2.73)

In Corollaries 2.12.2 and 2.12.3, the zeros of Zn (β) in a neighborhood of β∗ look locally like
equally spaced points, the spacing being

2π

ad1+d2 |β∗ |
· 1

n
+ o

(
1
n

)
, n → ∞ . (2.74)

This agrees with what we expect from the definition of the measure ΞE F
d1+d2

; see Section 2.7.

2.13 discussion, extensions and open problems

conjectures on further variations of the model. Similarly to the setup of Chapter 1,
it is natural to consider a complex GREM with arbitrary correlations between the real and
imaginary parts of the random exponents. That is, given correlation parameters ρ1 , . . . , ρd ∈
[−1, 1 ], consider a Gaussian random field {Yε : ε ∈ Sn} having the same distribution as
{Xε : ε ∈ Sn}, see (2.3), and satisfying

Cov(Xε , Yη ) =
l (ε ,η )

∑
k=1

ρk ak , ε , η ∈ Sn , (2.75)

where l (ε , η ) = min{k ∈ N : ε k 6= ηk} − 1. Along the lines of the present chapter, one can
study the partition function

Ẑn (β) = ∑
ε∈Sn

e
√

n(σ Xε+ iτYε ) , β = (σ , τ ) ∈ R2 . (2.76)

It seems that Theorems 2.4.1 and 2.7.1 need no changes even if we substitute partition function
(2.9) with the one from (2.76). The more refined results on fluctuations such as Theorem 2.10.1,
however, need appropriate modifications; see Chapter 1 for the case d = 1.

conjectures on models with infinitely many hierarchies. In this paragraph, we
provide heuristics and state conjectures on the shapes of the phase diagrams for the models
with infinitely many hierarchies (d = ∞).

In the GREM with d levels, there are d (real temperature) phase transitions at inverse
temperatures β = σ1 , . . . , σd , whereas the spin glass models like the SK model are conjectured
to exhibit a “continuum of freezing phase transitions” or the so-called full replica symmetry
breaking, cf., [151, 164]. It has been suggested by Derrida and Gardner [77] that it is possible to
consider the limit of the GREM as d, the number of levels, goes to ∞. Bovier and Kurkova [41]
defined the limiting object for the GREM, the Continuous Random Energy Model (=CREM), and
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Approximating CREM by GREM with many levels. Conjectured phase diagram of the CREM w.r.t.
complex temperatures.

Figure 2.8: (Conjectural) phase diagram of the CREM.

computed its free energy at real β. In this section, we will show heuristically how to pass to
the infinite hierarchy limit of the GREM in the complex β case; see Figure 2.8.

Let A : [0, 1 ] → R be an increasing, concave function with A(0) = 0. Fix also some α > 1.
Consider a GREM with d levels whose parameters (a1 , . . . , ad ) and (α1 , . . . , αd ) are given
by

a1 + . . . + ak = A
(

k
d

)
, log αk =

1
d

log α , 1 ≤ k ≤ d . (2.77)

The total number of energies in this GREM is αn+o(1) and the variance of each energy is
A(1)n.

Let us now pass to the large d limit. Let t ∈ [0, 1 ]. Then, it follows from (2.77) that the large
d limit of da [ td ] is A ′ ( t). Hence, the large d limit of the critical temperature σ[ td ] is

σ∞
t =

√
2 log α

A ′ ( t)
. (2.78)

The large d limits of the domains G [ td ] , F[ td ] , E [ td ] are the domains

G∞
t := {β ∈ C : 2 |σ | > σ∞

t , |σ | + |τ | > σ∞
t } , (2.79)

F∞
t := {β ∈ C : 2 |σ | < σ∞

t , 2(σ2 + τ2 ) > (σ∞
t )2} , (2.80)

E∞
t := C\G∞

t ∪ F∞
t . (2.81)

Recall that the complex plane phases of a GREM with d levels were denoted by Gd1 Fd2 Ed3 ,
where the parameters d1 , d2 , d3 ∈ N0 satisfy d1 + d2 + d3 = d. Instead of d1 , d2 , d3, in the
continuum limit we have three parameters γ1 , γ2 , γ3 ∈ [0, 1 ] which are the large d limits of
d1
d , d2

d , d3
d and hence satisfy γ1 + γ2 + γ3 = 1. To find the formula for γ1 , γ2 , γ3 ∈ [0, 1 ] note

that in the d-level GREM,

d1 = max{k ≥ 0 : β ∈ Gk} , d1 + d2 + 1 = max{k ≥ 0 : β ∈ Ek} . (2.82)
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Passing to the large d limit, we obtain

γ1 = sup{ t ∈ [0, 1 ] : β ∈ G∞
t } , γ1 + γ2 = sup{ t ∈ [0, 1 ] : β ∈ E∞

t } . (2.83)

For the d-level GREM, Theorem 2.4.1 states that the log-partition function is p(β) = pG (β) +

p F (β) + pE (β) ,where pG (β), p F (β), pE (β) are the contributions of glassy, fluctuation and
expectation levels given by

pG (β) := |σ |
d1

∑
k=1

√
2ak log αk , (2.84)

p F (β) :=
d1+d2

∑
k=d1+1

(
1
2

log αk + ak σ2
)

, (2.85)

pE (β) :=
d

∑
k=d1+d2+1

(
log αk +

1
2

ak (σ2 − τ2 )

)
. (2.86)

Replacing Riemann sums by Riemann integrals, we obtain that in the large d limit, the log-
partition function of the CREM is

p∞ (β) := p∞
G (β) + p∞

F (β) + p∞
E (β) , (2.87)

where

p∞
G (β) := |σ |

√
2 log α

∫ γ1

0

√
A ′ ( t)dt , (2.88)

p∞
F (β) :=

γ2

2
log α + (A(γ1 + γ2 ) − A(γ1 ))σ2 , (2.89)

p∞
E (β) := γ3 log α +

1
2
(σ2 − τ2 )(A(1) − A(γ1 + γ2 )) . (2.90)

If β is real, then γ1 is the solution of σ∞
γ1

= σ, γ2 = 0, γ3 = 1 − γ1 and the log-partition
function is given by

p∞ (β) := |σ |
√

2 log α
∫ γ1

0

√
A ′ ( t)dt + (1 − γ1 ) log α +

σ2

2
(A(1) − A(γ1 )) . (2.91)

This formula is known, see [41, Theorem 3.3] (where the second term is missing) and [45,
Theorem 4.2] (where all terms are present).

In the continuum limit of the GREM, we conjecture that there are seven phases

G F E , G F , F E , G E , G , F , E ; (2.92)

see Figure 2.8. In such a phase, for every letter which is not in the name of this phase, the
corresponding γ i must vanish. For example, the phase F E is characterized by the conditions
γ1 = 0, γ2 6= 0, γ3 6= 0.

It should be stressed that we have no rigorous proof that (2.87), (2.88), (2.89), (2.90) apply to
the CREM as defined by Bovier & Kurkova [41]. In the real β case, Bovier and Kurkova [41]
were able to sandwich a CREM between two close GREM’s which allowed them to derive (2.91)
rigorously using Gaussian comparison inequalities. This method does not seem to work in the
complex β case because we cannot apply the comparison inequalities.

The branching random walk, branching Brownian motion and the Gaussian multiplicative
chaos can be seen as the limiting cases of the CREM with A( t) = t. In this case, σ∞

t ≡ 1 which
means that we have only the phases E , F , G as in the REM, see Derrida et al. [75], Lacoin et al.
[133], Madaule et al. [144], and Madaule et al. [145] and Chapter 3.
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What happens at the borderline of the REM universality
class? Motivated by this question we consider branching
Brownian motion, which is a representative of the class of the
so-called log-correlated random fields. We show that this
model lies exactly at the borderline of the REM universality
class. We consider the partition function of the field of
energies given by the “positions” of the particles of the
complex-valued BBM. In such a complex BBM energy model,
we allow for arbitrary correlations between the real and
imaginary parts of the energies. We identify the fluctuations
of the partition function. As a consequence, we get the
full phase diagram of the log-partition function. It turns
out that the phase diagram is the same as for the field of
independent energies, i.e., Derrida’s random energy model.
Yet, the fluctuations are different from those of the REM in
all phases. All results are shown for any correlation between
the real and imaginary parts of the random energy.

This chapter is based on publications 5a., 6a.

In this chapter, we focus on the complex-valued branching Brownian Motion energy model and
show that this model lies exactly at the borderline of the complex REM universality class. This
means that the phase diagram of the model is the same as in the complex REM, Chapter 1.
However, the fluctuations of the partition function of this model are already influenced by the
strong correlations and differ from those of the REM in all phases of the model.

3.1 branching brownian motion.

BBM viewed as a random energy model plays a special rôle. It turns out that BBM has
correlations which are exactly at the borderline between the regime of weak correlations (REM
universality class1) and the one of strong correlations2.

Before stating our results, let us briefly recall the construction of a BBM. Consider a canonical
continuous branching process: a continuous time Galton-Watson (GW) process Athreya & Ney
[13]. It starts with a single particle located at the origin at time zero. After an exponential
time of parameter one, this particle splits into k ∈ Z+ particles according to some probability
distribution ( pk )k≥0 on Z+ . Then, each of the new-born particles splits independently at

1 = the same phase diagram as for the field of independent random energies.
2 = different phase diagram comparing to the REM one, due to the strictly larger leading order of the minimal energy

than the one for the independent field of random energies.

43
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independent exponential (parameter 1) times again according to the same ( pk )k≥0 , and so on.
We assume that ∑∞

k=1 pk = 1.3 In addition, we assume that ∑∞
k=1 kpk = 2 (i.e., the expected

number of children per particle equals two). Besides, we impose the finite second moment
assumption:

K :=
∞

∑
k=1

k(k− 1)pk < ∞. (3.1)

We assume that at time t = 0, the GW process starts with just one particle.
For given t ≥ 0, we label the particles of the process as i1(t), . . . , in(t)(t), where n(t) is the total

number of particles at time t. Note that under the above assumptions, we have E [n(t)] = et.
For s ≤ t, we denote by ik(s, t) the unique ancestor of particle ik(t) at time s. In general, there
will be several indices k, l such that ik(s, t) = il(s, t). For s, r ≤ t, define the time of the most
recent common ancestor of particles ik(r, t) and il(s, t) as4

d(ik(r, t), il(s, t)) := sup{u ≤ s ∧ r : ik(u, t) = il(u, t)}. (3.2)

For t ≥ 0, the collection of all ancestors naturally induces the random tree

Tt := {ik(s, t) : 0 ≤ s ≤ t, 1 ≤ k ≤ n(t)} (3.3)

called the GW tree up to time t. We denote by FTt the σ-algebra generated by the GW process
up to time t.

In addition to the genealogical structure, the particles get a position in R. Specifically, the first
particle starts at the origin at time zero and performs Brownian motion until the first time when
the GW process branches. After branching, each new-born particle independently performs
Brownian motion (started at the branching location) until their respective next branching times,
and so on. We denote the positions of the n(t) particles at time t ≥ 0 by x1(t), . . . , xn(t)(t), see
Figure 3.1.

We define BBM as a family of Gaussian processes,

xt := {x1(s, t), . . . , xn(t)(s, t) : s ≤ t} (3.4)

indexed by time horizon t ≥ 0. Note that conditionally on the underlying GW tree these
Gaussian processes have the following covariance

E
[

xk(s, t)xl(r, t) | FTt
]
= d(ik(s, t), il(r, t)), s, r ∈ [0, t], k, l ≤ n(t). (3.5)

In what follows, to lighten the notation, we will simply write xi(s) := xi(s, t), i ≤ n(t), s ≤ t
hoping that this will not cause confusion about the parameter t ≥ 0.

3.2 a model with complex-valued random energies

In this section, we introduce the complex BBM random energy model.

3 This implies that p0 = 0, so none of the particles ever dies.
4 Note that d(·, ·) is not the distance to the most recent common ancestor of the particles but rather the overlap

between the particle trajectories.
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Figure 3.1: A simulated realization of a branching Brownian motion. Compare Figures 1.1 and 2.2

Let ρ ∈ [−1, 1]. For any t ∈ R+, let X(t) := (xk(t))k≤n(t) and Y(t) := (yk(t))k≤n(t) be two
BBMs with the same underlying GW tree such that, for k ≤ n(t),

Cov(xk(t), yk(t)) = ρt. (3.6)

In what follows, to lighten the notation, we sometimes drop the dependence of quantities of
interest on ρ. Note that

Y(t) D
= ρX(t) +

√
1− ρ2Z(t), (3.7)

where “ D
=” denotes equality in distribution and Z(t) := (zi(t))i≤n(t) is a branching Brownian

motion independent from X(t) and with the same underlying GW process. Representation
(3.7) allows us to handle arbitrary correlations by decomposing the process Y into a part
independent from X and a fully correlated one.

We define the partition function for the complex BBM energy model with correlation ρ at
inverse temperature β := σ + iτ ∈ C by

Xβ,ρ(t) :=
n(t)

∑
k=1

eσxk(t)+iτyk(t). (3.8)

notation. By L[·], L[· | ·], and =⇒ or wlim, we denote the law, conditional law, and
weak convergence respectively. By N (0, s2), s2 > 0, we denote the centred complex isotropic
Gaussian distribution with density

C 3 z 7→ e−|z/s|2

πs2 ∈ R+ (3.9)

w.r.t. the Lebesgue measure on C.
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3.3 phase diagram

Figure 3.2: Phase diagram of the REM and the BBM energy model. The grey curves are the level lines
of the limiting log-partition function, cf. (3.11).

Let us specify the three domains depicted on Figure 3.2 analytically:

B1 := C \ B2 ∪ B3, B2 := {σ + iτ ∈ C : 2σ2 > 1, |σ|+ |τ| >
√

2},
B3 := {σ + iτ ∈ C : 2σ2 < 1, σ2 + τ2 > 1}.

(3.10)

Remark 3.3.1. Some of our results will be stated under the binary branching assumption (i.e., pk = 0
for all k > 2). Existence of all moments of the offspring distribution would also suffice for all our results
and will not require essential changes in the proofs.

Our first result states that the complex BBM energy model indeed has the phase diagram
depicted on Figure 3.2.

Theorem 3.3.1 (Phase diagram). For any ρ ∈ [−1, 1], and any β ∈ C, the complex BBM energy
model with binary branching has the same log-partition function and the phase diagram (cf., Figure 3.2)
as the complex REM, i.e.,

lim
t↑∞

1
t

logXβ,ρ(t) =


1 + 1

2 (σ
2 − τ2), β ∈ B1,

√
2|σ|, β ∈ B2,

1
2 + σ2, β ∈ B3

(3.11)

in probability.
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See Section 2.6 for a proof.

Remark 3.3.2. 1. For a deterministic regular weighted tree (a.k.a. directed polymer on a tree), under
the assumption of no correlations between the real and imaginary parts of the complex random
energies (i.e., case ρ = 0), formula (3.11) was obtained by Derrida et al. [75]. Our derivation of
Theorem 3.3.1 is based on the detailed information on the fluctuations of the partition function
(3.8) which we provide in Section 3.5. The proof in [75] is more direct and does not reach the
(CLT) precision which is provided in the following section. Moreover, the arguments in [75] seem
to crucially rely on the assumption ρ = 0.

2. It is natural to expect that the convergence in (3.11) also holds in L1, see Theorem 1.4.1 for a
related result for the REM.

3.4 glassy phase B2

In this section, we focus on the glassy phase B2. In this phase, the main contribution to the
partition function comes from the particles with the largest real parts of the energy. Let us
recall some of known facts about the extremal particles of the branching Brownian motin.

Bramson [46] and Bramson [47] showed that

m(t) :=
√

2t− 3
2
√

2
log t (3.12)

is the order of the maximal position among all BBM particles alive at large time t, i.e.,

lim
t↑∞

P

{
max
k≤n(t)

xk(t)−m(t) ≤ y
}

= E
[
e−CZe−

√
2y
]

, y ∈ R, (3.13)

where C > 0 is a constant and Z is the a.s. limit of the so-called derivative martingale:

Z := lim
t↑∞

n(t)

∑
k=1

(
√

2t− xk(t))e−
√

2(
√

2t−xk(t)), a.s. (3.14)

In Aïdékon et al. [1] and Arguin et al. [10], as t ↑ ∞, the non-trivial limiting point process of
the (shifted by m(t)) particles of BBM was identified. Specifically, it was shown that the point
process,

Et :=
n(t)

∑
k=1

δxk(t)−m(t), t ∈ R+ (3.15)

converges in law as t ↑ ∞ to the point process (see Figure 3.4)

E := ∑
k,l

δ
ηk+∆(k)

l
, (3.16)

where:

(a) {ηk}k∈N ⊂ R are the atoms of a Cox-Poisson point process with random intensity measure
CZe−

√
2ydy, where C and Z are the same as in (3.13). See Figure 3.3.
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Figure 3.3: Poisson point process

(b) {∆(k)
l }l∈N ⊂ R are the atoms of independent and identically distributed point processes

∆(k), k ∈N called clusters which are independent copies of the limiting point process

∆ := lim
t↑∞

n(t)

∑
k=1

δx̂k(t)−maxl≤n(t) x̂l(t) (3.17)

with x̂( t) being BBM x( t) conditioned on maxk≤n( t) xk ( t) ≥
√

2t.

Poisson point process + Cluster ∆1

Figure 3.4: Poisson point process + all clusters

We start with the convergence of the partition function in the case of the real BBM energy
model at complex temperatures. We say that a complex-valued r.v. Y is isotropic α-stable if there
exists c ∈ R+ and α ∈ (0, 2] such that

E[eiRe(z̄Y)] = e−c|z|α , for all z ∈ C. (3.18)

Recall the notation from (3.16).

Theorem 3.4.1 (Partition function fluctuations for |ρ| = 1). For β = σ + iτ ∈ B2, the rescaled
partition function Xβ,1(t) := e−βm(t)X̃β,1(t) converges in law to the r.v.

Xβ,1 := ∑
k,l≥1

eβ
(

ηk+∆(k)
l

)
, as t ↑ ∞. (3.19)

For |ρ| ∈ (0, 1), we get the following result.

Theorem 3.4.2 (Partition function fluctuations for |ρ| ∈ (0, 1)). For β = σ + iτ ∈ B2 and
|ρ| ∈ (0, 1), the rescaled partition function Xβ,ρ(t) := e−σm(t)X̃β,ρ(t) converges in law to the r.v. Xβ,ρ,
as t ↑ ∞. Conditionally on Z, Xβ,ρ is a complex isotropic

√
2/σ-stable r.v.

Remark 3.4.1. For ρ = 0, Theorem 3.4.2 was proven in Madaule et al. [144]. Our proof uses a
representation of correlated real and imaginary parts in terms of independent BBM’s. As in Madaule
et al. [144], we control second moments. However, the way we do this is different and simpler then the
method used in that paper, which relies on decomposing the paths of the BBM particles according to the
time and location of the minimal position along the given path. Our approach uses instead the upper
envelope for ancenstral paths that was obtained in Arguin et al. [12].
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3.5 a class of martingales

In the centre of our analysis are the following martingales

Mσ,τ(t) := e−t
(

1+2iρστ+ σ2−τ2
2

)
Xβ,ρ(t) =

n(t)

∑
k=1

e−t
(

1+2iρστ+ σ2−τ2
2

)
eσxk(t)+iτyk(t). (3.20)

We denote by (Ft)t∈R+ the natural filtration associated to (Mσ,τ(t))t∈R+ .
Note that, for β = σ ∈ [0, 1/

√
2),Mσ,0(t) coincides with the McKean martingale introduced

in Bovier & Hartung [38], where it was proven that these martingales converge almost surely
and in L1 to a non-degenerate limit.

The next theorem states that for β ∈ B1 the martingalesMσ,τ(t) are in Lp for some p > 1.

Theorem 3.5.1 (Lp martingale convergence in B1). For β = σ + iτ with β ∈ B1, |β| ≥ 1, and any
ρ ∈ [−1, 1],Mσ,τ(t) is a martingale with expectation 1 and it is in Lp for p ≤

√
2

σ . Hence, the limit

lim
t↑∞
Mσ,τ(t) =:Mσ,τ (3.21)

exists a.s., in L1, and is non-degenerate.

Proposition 3.5.1. For β ∈ C with |β| < 1,Mσ,τ(t) is an L2-bounded martingale with expectation
one. In particular,Mσ,τ(t) converges to a non-degenerate limit MMσ,τ a.s. and in L2 as t tends to
infinity.

On the boundary B1,2 between phases B1 and B2, i.e., on the set

B1,2 := B1 ∩ B2 = {σ + iτ ∈ C : |σ| > 1/
√

2, |σ|+ |τ| =
√

2} (3.22)

a similar result still holds.

Theorem 3.5.2 (Lp martingale convergence on B1,2). For β ∈ B1,2 and any ρ ∈ [−1, 1], we have
thatMβ(t) is a Lp-bounded martingale, for any p <

√
2/σ with expectation 1. Hence, the limit

lim
t↑∞
Mσ,τ(t) =:Mσ,τ (3.23)

exists a.s. in L1, and is non-degenerate.

Remark 3.5.1. Similar result for ρ = 0 has been obtained for the complex Gaussian multiplicative
chaos in [133, Theorem 3.11].

Remark 3.5.2 (Smoothing transforms). Note that the martingales Mσ,τ(t) satisfy a recursive
equation of the form

L [Mσ,τ(t + r)] = L
[ n(r)

∑
k=1

ak(r)M
(k)
σ,τ(t)

]
, (3.24)

whereM(k)
σ,τ(t− r) are i.i.d. copies ofMσ,τ(t) and ak(r) ∈ C are some complex weights independent

fromM(k)
σ,τ(t− r), k ∈N. If a limitMσ,τ as t ↑ ∞ ofMσ,τ(t + r) exists, then it would have to satisfy

the equation

L [Mσ,τ] = L
[ n(r)

∑
k=1

ak(r)M
(k)
σ,τ

]
, (3.25)

whereM(k)
σ,τ are i.i.d. copies ofMσ,τ. This type of equation is called complex smoothing transform. We

refer to Meiners and Mentemeier [148] and Kolesko and Meiners [129] for more details.



50 complex branching brownian motion

3.6 conditional central limit theorems

The following three results cover the whole strip |σ| < 1/
√

2 and basically are “central limit
theorems” (CLTs) with random variance.

Theorem 3.6.1 (CLT with random variance for |σ| < 1/
√

2, β ∈ B1). Let β = σ + iτ with
|σ| < 1/

√
2 and ρ ∈ [−1, 1]. For β ∈ B1,

wlimr↑∞ wlimt↑∞ L
[
Mσ,τ(t + r)−Mσ,τ(r)

er(1−σ2−τ2)

∣∣∣ Fr

]
= N (0, C1M2σ,0) , (3.26)

where C1 > 0 is some constant.

Remark 3.6.1. 1. The scaling on the l.h.s. of (3.26) does not depend on ρ.

2. The appearance of the random variance in Theorem 3.6.1 (and in the subsequent ones) is in
sharp contrast with the REM (Chapter 1) and generalized REM (Chapter 2), where CLTs with
deterministic variance hold for β in the strip |σ| < 1/

√
2.

3. For β ∈ R, a result resembling Theorem 3.6.1 was obtained by Iksanov and Kabluchko in [116].

4. For a logarithmically correlated field of complex-valued random energies on a Euclidean space
without correlations between the real and imaginary parts of the energy (i.e., case ρ = 0), a similar
result was shown by Lacoin et al. [133, Theorem 3.1].

Theorem 3.6.2 (CLT with random variance in B3). For β ∈ B3, ρ ∈ [−1, 1] and binary branching,

L
[ Xβ,ρ(t)

et(1/2+σ2)

∣∣∣M2σ,0

]
=⇒
t↑∞
N (0, C2M2σ,0) , (3.27)

where C2 > 0 is some constant.

Remark 3.6.2. In case ρ = 0, a similar result has been obtained by Lacoin et al. [133, Theorem 4.2].

A similar result also holds on the boundary between phases B1 and B3, i.e., on the set

B1,3 := B1 ∩ B3 = {σ + iτ ∈ C : σ2 + τ2 = 1, |σ| < 1/
√

2}. (3.28)

Theorem 3.6.3 (CLT with random variance on B1,3). For β ∈ B1,3, ρ ∈ [−1, 1], and binary
branching,

L
[ Xβ,ρ(t)√

tet(1/2+σ2)

∣∣∣M2σ,0

]
=⇒
t↑∞
N (0, C3M2σ,0) , (3.29)

where C3 > 0 is some constant.

Remark 3.6.3. For ρ = 0, a similar result for Gaussian multiplicative chaos was obtained by Lacoin et
al. [133, Theorem 4.2].
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Recall that the behaviour of the partition function at β =
√

2 is determined by the martingale
M1,0(t), which is related to another martingale – the so-called derivative martingale Z(t):

Z(t) :=
n(t)

∑
i=1

(
√

2t− xk(t))e−
√

2(
√

2t−xk(t)). (3.30)

Lalley and Sellke proved in [134] that Z(t) converges a.s. as t → ∞ to a non-trivial limit Z
which is a positive and a.s. finite random variable.

At the boundary,

B2,3 := B2 ∩ B3 =
{

σ + iτ ∈ C : |σ| = 1/
√

2, |τ| ≥ 1/
√

2
}

, (3.31)

including the triple point

β1,2,3 := B1 ∩ B2 ∩ B3 = (1 + i)/
√

2, (3.32)

after appropriate rescaling, we have the following CLT with random variance.

Theorem 3.6.4 (CLT with random variance for |σ| = 1/
√

2). Let β = σ + iτ with |σ| = 1/
√

2 and
ρ ∈ [−1, 1] and assume binary branching. Then:

(i) For τ > 1/
√

2,

wlimr↑∞ wlimt↑∞ L
[

r1/4 ·
Xβ,ρ(t + r)

e(t+r)(1/2+σ2)

∣∣∣ Fr

]
= N

(
0, C2

√
2
π
Z
)

. (3.33)

(ii) For τ = 1/
√

2,

wlimr↑∞ wlimt↑∞ L
[

r1/4
√

t
·
Xβ,ρ(t + r)

e(t+r)(1/2+σ2)

∣∣∣ Fr

]
= N

(
0, C3

√
2
π
Z
)

. (3.34)

Remark 3.6.4. For ρ = 0, a similar result for Gaussian multiplicative chaos was obtained by Lacoin et
al. [133, Theorem 4.3].

3.7 summary and outlook

For the complex BBM energy model, we now know:

• fluctuations of the partition function;

• distribution of complex zeros of the partition function;

• the limiting log-partition function;

• the phase diagram.

Here are some open problems related to this chapter:

• Study the log-partition function of the randomized ζ-function at complex temperatures, see,
e.g., Arguin et al. [9] for the model.

• Study complex plane phase diagrams of models with microscopic interactions such as the
one from Chapter 4.
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Finding the (space-height) distribution of the (local) extrema
of high-dimensional strongly correlated random fields is a
notorious hard problem with many applications. Following
Fyodorov & Sommers [93], we focus on the Gaussian fields
with isotropic increments and take the viewpoint of statistical
physics. By exploiting various probabilistic symmetries, we
rigorously derive the Fyodorov-Sommers formula for the
log-partition function in the high-dimensional limit. The
formula suggests a rich picture for the distribution of the
local extrema akin to the celebrated spherical Sherrington-
Kirkpatrick model with mixed p-spin interactions.

This chapter is based on publication 2a.

4.1 introduction

In this chapter, we focus on the energy based model where the energy function is given by an
arbitrary high-dimensional Gaussian field with isotropic increments.

Consider the Gaussian random field with isotropic increments X = XN = {XN(u) : u ∈ RN},
N ∈ N. The adjective “isotropic” means here that the law of the increments of the field X is
invariant under rigid motions (= translations and rotations) in RN . We are interested in the
case N � 1 and in the case of strongly correlated fields with high-dimensional correlation structure.
Therefore, we assume that the field XN satisfies

E
[
(XN(u)− XN(v))2] = D

(
1
N
‖u− v‖2

2

)
=: DN(‖u− v‖2

2), u, v ∈ RN , (4.1)

where ‖ · ‖2 denotes the Euclidean norm on RN and the correlator D : R+ → R+ is any admissible
function. Complete characterization of all correlators D that are admissible in (4.1), for all N, is
known, see Theorem 4.2.1. Note that the law of the field XN is determined by (4.1) only up to
an additive shift by a Gaussian random variable. In what follows, without loss of generality,
we assume that XN(0) = 0.

The model was heuristically analyzed in detail using the non-rigorous replica method by
Fyodorov & Le Doussal [91] and Fyodorov & Sommers [93] in the case of the rotationally
invariant configuration space:

SN := {u ∈ RN : ‖u‖2 ≤ L
√

N}, N ∈N. (4.2)

53



54 high-dimensional rugged landscapes seen through spin glasses

Related model was previously suggested and analyzed in the physics literature by Mézard &
Parisi [150].

In this chapter, we consider product spaces, which are not rotationally invariant:

SN := SN , S ⊂ R. (4.3)

Let µ ∈ Mfinite(S) be such that the origin is contained in the interior of the convex hull of the
support of µ. Define µN := µ⊗N ∈ Mfinite(SN). A canonical example is the discrete hypercube
SN := {−1; 1}N equipped with the uniform a priori measure, i.e., µ({u}) := 2−N , for all
u ∈ SN .

main objects. We are interested in the asymptotic behavior of the extremes of the random
field XN on the sequence of the particle state spaces SN ⊂ RN as N ↑ +∞. The state spaces are
assumed to be equipped with a sequence of a priori reference measures {µN ∈ Mfinite(SN) | N ∈
N}. We now define the main quantities of interest in this work. Consider the partition function

ZN(β) :=
∫

SN

µN(du) exp
(

β
√

NXN(u)
)

, β ∈ R. (4.4)

We view (4.4) as an exponential functional of the field XN , which is parametrized by the
inverse temperature β. Heuristically, for large β (i.e., β ↑ +∞), the maxima of the field XN give
substantial contribution to the integral (4.4). The N-scalings in (4.4), (4.1) and the “size” of SN

are tailored for studying the large-N limit of the random log-partition function:

pN(β) :=
1
N

log ZN(β), β ∈ R. (4.5)

For comparison with the theoretical physics literature, let us note that there one conventionally
substitutes β 7→ −β in (4.4) (this has no effect on the distribution of ZN due to the symmetry of
the centered Gaussian distribution of the field XN), and considers instead of (4.5) the free energy

fN(β) := − 1
β

pN(β), β ∈ R+. (4.6)

4.2 long and short-range correlations

Before stating our results let us recall the full classification of admissible in (4.1) correlators.
We recall some facts about high-dimensional Gaussian processes with isotropic increments.

The following result can be extracted from the work [189] of A.M. Yaglom (see also [190]).

Theorem 4.2.1. If X is a Gaussian random field with isotropic increments that satisfies (4.1), then one
of the following two cases holds:

1. [Isotropic field] There exists the correlation function B : R+ → R such that

E [XN(u)XN(v)] = B
(

1
N
‖u− v‖2

2

)
, u, v ∈ ΣN , (4.7)
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where the function B has the representation

B(r) = c0 +
∫ +∞

0
exp

(
−t2r

)
ν(dt), (4.8)

where c0 ∈ R+ is a constant and ν ∈ Mfinite(R+) is a non-negative finite measure. In this case,
the function D in (4.1) is expressed in terms of the correlation function B as

D(r) = 2(B(0)− B(r)). (4.9)

2. [Non-isotropic field with isotropic increments] The function D in (4.1) has the following
representation

D(r) =
∫ +∞

0

[
1− exp

(
− t2r

)]
ν(dt) + A · r, r ∈ R+, (4.10)

where A ∈ R+ is a constant and ν ∈ M((0;+∞)) is a σ-finite measure with∫ +∞

0

t2ν(dt)
t2 + 1

< ∞. (4.11)

Remark 4.2.1. In Theorem 4.2.1, assuming c0 = 0, case 1 is sometimes referred to as the short-
range one which reflects the decay of correlations: B(r) ↓ +0, as r ↑ +∞. This fact follows from
the representation (4.8). Correspondingly, case 2 is called the long-range one, since here, assuming
X(0) = 0, the correlation structure is

E [XN(u)XN(v)] =
1
2
(

DN(‖u‖2
2) + DN(‖v‖2

2)− DN(‖u− v‖2
2)
)

, u, v ∈ RN . (4.12)

Equation (4.12) in combination with the representation (4.10) implies that the correlations of the field
XN do not decay, as ‖u− v‖ → +∞.

Remark 4.2.2. Theorem 4.2.1 implies that the function D appearing in (4.1) is necessarily concave,
infinitely differentiable, and non-decreasing on (0;+∞).

4.3 results

To formulate our results on the limiting log-partition function, we need the following defini-
tions.

parisi-type functional. Given r ∈ R+, consider the space of the functional order parameters

X (r) := {x : [0; r]→ [0; 1] | x is non-decreasing càdlàg, x(0) = 0, x(r) = 1}, (4.13)

It is convenient to work with the space of the discrete order parameters

X ′n(r) := {x ∈ X (r) | x is piece-wise constant with at most n jumps}. (4.14)
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Let us denote the effective size of the particle state space by

d := sup
N

(
1
N

sup
u∈SN

‖u‖2
2

)
. (4.15)

For what follows, it is enough to assume that r ∈ [0; d] in (4.13). Note that, in case (4.3),
d = supu∈S u2.

Now, let us define the non-linear functional that appears in the variational formula of our
main result. We do it in three steps:

1. Given large enough M ∈ R+, define the regularized derivative D′,M : R+ → R of the
correlator D as

D′,M(r) :=

D′(r), r ∈ [1/M;+∞),

M, r ∈ [0; 1/M).
(4.16)

Given r, M ∈ R+, define the function θ
(M)
r : [−r; r]→ R as

θ
(M)
r (q) := qD′,M(2(r− q)) +

1
2

D(2(r− q)), q ∈ [−r; r]. (4.17)

2. Given r ∈ R+, x ∈ X (r) and the (sufficiently regular) boundary condition h : R → R,
consider the semi-linear parabolic Parisi’s terminal value problem:∂q f (y, q) + 1

2 D′,M(2(r− q))
(

∂2
qq f (y, q) + x(q)

(
∂y f (y, q)

)2
)
= 0, (y, q) ∈ R× (0, r),

f (y, 1) = h(y), y ∈ R.
(4.18)

Let f (M)
r,x,h : [0; 1] × R+ → R be the unique solution of (4.18). Solubility of the Parisi

terminal value problem (4.18), its relation to the Hamilton-Jacobi-Bellman equations and
stochastic control problems is discussed in a more general multidimensional context
in [44, Section 6].

3. Given the family of the (sufficiently regular for (4.18) to be solvable) boundary conditions

g := {gλ : R→ R | λ ∈ R}, (4.19)

and given r ∈ [0; d], define the local Parisi functional P(β, r, g) : X (r)→ R as

P(β, r, g)[x] := lim
M↑+∞

(
inf
λ∈R

[
f (M)
r,x,gλ

(0, 0)− λr
]
− β2

2

∫ 1

0
x(q)dθ

(M)
r (q)

)
, x ∈ X (r).

(4.20)

In (4.20), the integral with respect to θ
(M)
r is understood in the Lebesgue-Stieltjes sense.
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main results. Let us start by recording the basic convergence result for the log-partition
function.

Theorem 4.3.1 (Existence of the limiting free energy). For any β > 0, the large N-limit of the
log-partition function exists and is a.s. deterministic:

pN(β) −→
N↑+∞

p(β), almost surely and in L1. (4.21)

In addition, for any N ∈N, the following concentration of measure inequality holds

P {|pN(β)−E [pN(β)] | > t} ≤ 2 exp
(
− Nt2

4D(d)

)
, t ∈ R+. (4.22)

The main result of this work is the following variational representation for the limiting
log-partition function in terms of the Parisi functional (4.20).

Theorem 4.3.2 (Free energy variational representation, comparison with cascades). Assume
(4.3). Let the family of boundary conditions (4.19) be defined as

gλ(y) := log
∫

S
µ(du) exp

(
βuy + λu2) , y ∈ R. (4.23)

Then, for all β ∈ R,

p(β) := sup
r∈[0;d]

inf
x∈X (r)

(P(β, r, g)[x]) , almost surely and in L1, (4.24)

Remark 4.3.1. In the case (4.10), the field (4.26) has a feature, which is not within the assumptions
typically found in the literature Guerra [104], Guerra & Toninelli [105], Panchenko [165], Talagrand
[184], and Talagrand [186]: the correlator D is not of class C1, namely, D can have a singular derivative
at 0. To deal with the singularity, we need a regularization procedure, cf. (4.16) and (4.20).

heuristics. It is natural to ask the following questions: Why is Parisi’s theory of hierarchical
replica symmetry breaking Mézard et al. [151] (which is usually behind the functionals of the
type (4.20)) applicable to Gaussian fields with isotropic increments satisfying (4.1)? Where are
the “interacting spins” in the present context?

A hint is given by the following observation. Define

〈u, v〉N :=
1
N

N

∑
i=1

uivi, u, v ∈ RN . (4.25)

Let us fix r ∈ [0; d]. By (4.12), the restriction of the field XN with isotropic increments to a
sphere with radius r centered at the origin, leads to the mixed p-spin spherical SK model (cf. [184])
with the following covariance structure

E [XN(u)XN(v)] = D(r)− 1
2

D(2(r− 〈u, v〉N)) =: Gr(〈u, v〉N), ‖u‖2
2 = ‖v‖2

2 = rN, (4.26)

where Gr : R+ → R is given by

Gr(q) := D(r)− 1
2

D(2(r− q)), q ∈ R+. (4.27)

Thus, (4.26) implies that, given r, each field of the type (4.1) induces a mixed p-spin spherical
SK model with the convex correlation function Gr (see Remark 4.2.2). It is this convexity that
allows for the proof of the upper bound (along the lines of Talagrand [186]) in (4.24). for all
admissible correlators.
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sketch of the proof. The proof of Theorem 4.3.2 exploits the observation (4.26) and
combines it with the localization technique of Bovier & Klimovsky [44]. By means of the large
deviations principle, this technique reduces the analysis of the full log-partition function (4.5)
to the local one, where (4.26) approximately holds true everywhere. The price to pay for
this reduction is the saddle point variational principle (4.24), which involves the Lagrange
multipliers that enforce the localization. This gives the upper bound.

For the lower bound, on each spherical shell, we use the Aizenman-Simms-Starr scheme
Aizenman et al. [2] following the beautiful method of Panchenko [166]. Next, using Ghirlanda-
Guerra identities Ghirlanda & Guerra [98] and Panchenko [164], we show that the corre-
sponding comparison structure converges to the Ruelle probability cascade (RPC) Panchenko
[164] and Ruelle [174]. Finally, Aizenman-Sims-Starr scheme evaluated at the RPC yields the
matching lower bound in (4.24).

4.4 rotationally invariant configuration space: the fyodorov-
sommers formula

Parallel to the product state space (4.3), one can consider the rotationally invariant state space:

SN := {u ∈ RN : ‖u‖2 ≤ L
√

N}, L > 0. (4.28)

In this case, we assume that the a priori measure µN ∈ Mfinite(SN) has the density

dµN

dλN
(u) := exp

(
N

∑
i=1

f (ui)

)
, u = (ui)

N
i=1 ∈ RN , f : R→ R (4.29)

with respect to the Lebesgue measure λ on RN . Let the function f be of the form f (u) :=
h1u− h2u2, where h1 ∈ R and h2 ∈ R+ are given constants. Let us note that in case (4.28),
d = L2.

In the case of the rotationally invariant state space (4.28), one can obtain a more explicit
representation for the Parisi functional (4.20), which does not require any regularization. Given
x ∈ X (r), define qmax := qmax(x) := sup

{
q ∈ [0; r] : x(q) < 1

}
. Consider the Crisanti-Sommers

type functional (cf. Crisanti & Sommers [61, (A2.4)] and Fyodorov & Sommers [93, (47)])

CS(β, r)[x] :=
1
2

[
log(r− qmax) +

∫ qmax

0

dq∫ r
q x(s)ds

+ h2
1

∫ r

0
x(q)dq− h2r

]

+
β2

2

(
D′(2(r− qmax)) +

∫ qmax

0
D′(2(r− q))x(q)dq

)
, x ∈ X (r).

(4.30)

By reducing the case of the rotationally invariant state space to the product state space case via
a large deviations argument (an idea exploited in Talagrand [184]), we arrive at the following.

Theorem 4.4.1 (Fyodorov-Sommers formula). In the case of the rotationally invariant state space
(4.28), for all β ∈ R+, h1 ∈ R, h2 ∈ R+, there exists unique r∗ ∈ [0; d] and unique x∗ ∈ X (r) such
that

p(β) = max
r∈[0;d]

min
x∈X (r)

CS(β, r)[x] = CS(β, r∗)[x∗], almost surely. (4.31)
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Remark 4.4.1. The Crisanti-Sommers type functional (4.30) corresponds to the a priori distribu-
tion (4.29), which represents the linear combination of linear and quadratic external fields. Formula [93,
(47)] was derived under the assumption of the quadratic external field, whereas formula [61, (A2.4)] was
obtained for the spherical SK model with the linear external field.

4.5 related research

The model on rotationally invariant configuration space was studied in detail using physics
heuristics (replica method + hierarchical replica symmetry breaking Ansatz) by Fyodorov &
Le Doussal [91], Fyodorov & Bouchaud [92], and Fyodorov & Sommers [93] (see also older
related physics literature, e.g., Mézard & Parisi [150]).

4.6 outlook

Here are some open problems related to the model considered in this chapter:

• For the rotationally invariant configuration space:

– What is the random geometry/topology of the landscape? Are there many local
minima? Are they far apart? Are they similarly deep? Are they separated by high
barriers?

– Identify the fluctuations of the partition function in the model of this chapter.

– Study the phase diagram of the model at complex temperatures. Does it have
features similar to the CREM, see Section 2.13?

• In the spirit of the equations of Thouless, Anderson & Palmer [187], derive a set of
fixed–point equations for computing the expected (w.r.t. the Gibbs measure) values of the
coordinates of the model. Some related mathematics literature is Belius & Kistler [23],
Chen & Panchenko [53], and Chen et al. [54].
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5 S PAT I A L C A N N I N G S M O D E L I N R A N D O M
E N V I R O N M E N T

We introduce and study a system of hierarchically inter-
acting measure-valued random processes that arises as the
continuum limit of a large population of individuals carry-
ing different types. Individuals live in colonies labelled by
the hierarchical group of order N, and are subject to migra-
tion and resampling on all hierarchical scales simultaneously.
The resampling mechanism is such that a random positive
fraction of the population in a block of colonies inherits the
type of a random single individual in that block, which is
why we refer to our system as the hierarchical Cannings
process. Before resampling in a block takes place, all indi-
viduals in that block are relocated uniformly, which we call
reshuffling. The evolution of the system seen backwards in
time leads to a dual process of coalescing random walks
(representing the lineages) in random environment. The
space-time scaling behaviour of the dual determines that of
the system forward in time.
We study a version of the hierarchical Cannings process
in random environment, namely, the resampling measures
controlling the change of type of individuals in different
blocks are chosen randomly with a given mean and are
kept fixed in time, i.e., we work in the quenched setting.
We give a necessary and sufficient condition under which
a multi-type equilibrium is approached (= coexistence) as
opposed to a mono-type equilibrium (= clustering). More-
over, in the hierarchical mean-field limit N → ∞, with the
help of a renormalization analysis we obtain a full picture
of the space-time scaling behaviour of block averages on
all hierarchical scales simultaneously. We show that the
k-block averages are distributed as the superposition of a
Fleming-Viot diffusion with a deterministic volatility con-
stant dk and a Cannings process with a random jump rate,
both depending on k. In the random environment dk turns
out to be smaller than in the homogeneous environment of
the same mean.

This chapter is based on publications 1a., 3a., 7a.

63
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5.1 motivation and goal

Two models play a central role in the world of stochastic multi-type population dynamics:

(1) The Moran model and its limit for large populations, the Fleming-Viot measure-valued
diffusion.

(2) The Cannings model and its limit for large populations, the Cannings measure-valued
jump process (also called the generalized Fleming-Viot process).

The Cannings model accounts for situations in which resampling is such that a random positive
fraction of the population in the next generation inherits the type of a random single individual
in the current generation, even in the infinite population limit (see Cannings [48], [49]). In order
to describe a setting where this effect has a geographical structure, i.e., where migration of
individuals is allowed as well, different models have been proposed in Limic and Sturm [142],
Blath, Etheridge and Meredith [34], Barton, Etheridge and Véber [21], Berestycki, Etheridge
and Véber [26]. The behaviour of these models has been studied in detail and its dependence
on the geographic space is fairly well understood.

Figure 5.1: Hierarchical group

The type space is typically chosen to be a compact Polish space E. In this chapter, we focus
on the case where the geographic space is the hierarchical group ΩN of order N (see Figure 5.1),
since this allows us to carry out a full renormalization analysis. In the hierarchical mean-field limit
N → ∞, the migration can be chosen in such a way that it approximates migration on the
geographic space Z2, a possibility that was exploited by Sawyer and Felsenstein [179] (see also
Dawson et al. [68]).

In this chapter, we focus on the spatial Cannings model the reproduction mechanism is
controlled by catastrophic events on a small time scale, for which it is appropriate to assume
that the rate of occurrence has a spatially inhomogeneous structure. This leads us to consider
spatial Cannings models with block resampling in random environment, i.e., both the form and
the overall rate of the block resampling mechanism depend on the geographic location.

Remark 5.1.1. We only work with continuum models. However, we motivate these models by
viewing them as the large-population limit of individual-based models.

Our goal is three-fold:
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(1) Construction of the hierarchical Cannings process in random environment via a well-
posed martingale problem and derivation of a duality relation with a hierarchical spatial
coalescent in random environment.

(2) Analysis of the longtime behaviour, in particular, the dichotomy between a multi-type
equilibrium and a mono-type equilibrium.

(3) Scaling analysis of a collection of renormalised processes obtained by looking at the evolution
of blocks averages on successive space-time scales in the hierarchical mean-field limit and
the consequences for universality classes of the mono-type cluster formation.

5.2 migration in a hierarchical geography

Sawyer & Felsenstein [179] suggested a model with migration rates that do not depend on the
Euclidean distance between the colonies but rather on the clustering distance (e.g., village 
valley province state country continent).

Consider the following geographical space:

• (Countable abelian) Hierarchical group (which can also be seen as a regular tree): ΩN ={
η = (ηl)l∈N0 ∈ {0, 1, . . . , N − 1}N0 : ∑l∈N0

ηl < ∞
}

.

• Here N ∈N is a parameter.

• We interpret η ∈ ΩN as the address of a colony in the geographical space, see Figure 5.2.

Figure 5.2: A hierarchical geographical space with colonies of multi-type individuals

migration on the hierarchical space. Dawson et al. [68] introduced and studied in
detail the hierarchical random walk (HRW). This is a random walk on the hierarchical group ΩN

with the following ingredients:
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• Migration rates: c := (ck)k∈N0 ∈ (0, N)N0 .

• Each individual at η ∈ ΩN jumps uniformly in a k-block around η at rate ck−1/Nk−1.

5.3 Λ-cannings model

reproduction within a colony: the discrete cannings model. The Cannings model
in discrete time was introduced by Cannings [48, 49] and is based on the following ingredients:

• M ∈N the population size.

• Exchangeable collection of r.v. {ν(M)
i ∈ [0 : M] : i ∈ [1 : M]} representing the numbers of

children for each individual currently alive, which

• satisfies the constraint ∑M
i=1 ν

(M)
i = M of constant population size.

Λ-cannings model. In a continuous time, continuous mass limit, discrete Cannings models
can be rescaled to the Λ-Cannings model. This large universality class appearing in the limit of
M → ∞ was identified by Sagitov [176], Möhle & Sagitov [152]:

In the multi-type situation, it is convenient to encode the state of the colony via the empirical
distribution of types. For M → ∞, we study the evolution of the empirical distribution of types:
X ( t) := 1

M ∑ M
i=1 δT ( i ,t) ∈ M1 (E) in a colony. The evolution is Markovian and is driven by

the Poisson point process on R+ × [0, 1 ] with dt ⊗ Λ(dr)/r2, where Λ ∈ M finite ([0, 1 ]),
Λ({0}) = 0. At each jump, the population is resampled: the individuals are marked for
resampling by the Bernoulli experiment (rδ1 + (1 − r)δ0 )⊗M and the ones marked all get the
same type of a randomly chosen parent individual, see Figure 5.3

Figure 5.3: Resampling

5.4 inhomogeneous catastrophes

Now we introduce the catastrophes affecting the whole blocks:

• They can model, e.g., droughts, floods, forest fires, epidemics, meteorite impacts, etc.
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• They are driven by the Poisson point process on R+ × [0, 1 ] with dt ⊗ N−2k Λk (dr)/r2 ,
where Λk ∈ M1 ([0, 1 ]), Λ({0}) = 0.

• Non-local resampling-reshuffling:

– Reshuffle all individuals simultaneously in the k-block by assigning to each a new
uniformly chosen location in the block.

– Resample the individuals in k-block using the Cannings mechanism Λk as if they
were at the same location.

Figure 5.4: ΩT
N with N = 3, ξ ∈ Ω(k)

N ⊂ ΩT
N , |ξ| = k = 2, η, ζ ∈ B|ξ|(ξ). The elements of ΩT

N are the
vertices of the tree (indicated by �’s).

spatially inhomogeneous environment. Now we introduce the spatially inhomogeneous
mechanism of catastrophes. Similarly to the Λ-resampling, the catastrophes are driven by the
random measures:

Λ(ω) =
{

Λξ(ω) ∈ Mf([0, 1]) : ξ ∈ ΩT
N
}

(5.1)

where ΩT
N is the full tree (i.e., not only leafs but all other nodes of the tree), see Figure 5.4.

• ξ ∈ ΩT
N is the address of a |ξ|-block.

• ω is the random environment.

• Structural assumption: Λξ(ω) = λ|ξ|χ
ξ(ω), where:

– χξ(ω) ∈ Mf([0, 1]) is random stationary and λk is deterministic.

summary of the hierarchical cannings process in random environment. We
have informally described the dynamics of the hierarchically interacting (c, Λ)-Cannings
process in random environment, see Figure 5.2.

X(ΩN) =
{

X(ΩN)
η (ω; t) ∈ M1(E)

}
t∈R+,η∈ΩN

. (5.2)

The dynamics features a competition between:

• Migration c = (ck)k∈Z+
(spatial movement) vs. Resampling + Catastrophes in random environ-

ment Λ = (Λk(ω))k∈Z+
(reproduction under constrained resources).
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• The competition happens on the hierarchy of slow and fast time scales on which the blocks
evolve.

Remark 5.4.1. The dynamics has the following features:

• Non-diffusive behaviour because of the PPP-driven jumps.

• Strongly correlated global updates because of the non-local reshuffling-resampling.

• Spatially inhomogeneous jump rates because of the random environment.

technical assumptions. In what follows, we impose some technical assumptions on the
resampling mechanism:

Λ0({0}) = 0,
∫
(0,1]

Λ0(dr)
r

= ∞, (5.3)

and

Λk({0}) = 0,
∫
(0,1]

Λk(dr)
r2 < ∞. k ∈N. (5.4)

5.5 long-run behavior

Question 5.5.1. Assume that we start the spatial Cannings model in random environment in a
biodiverse configuration.

• Does the process converge to equilibrium in the long run, i.e.

L
[

X(ΩN)(t)
]

=⇒
t→+∞

? (5.5)

• Is there a biodiversity in the long run?

The answer to the first part of the question is as follows.

Theorem 5.5.1 (Equilibrium). Fix N ∈ N\{1}. Suppose that, under the law P, the law of the
initial state X(ΩN)(ω; 0) is stationary and ergodic under translations in ΩT

N , with mean single-
coordinate measure θ = E[X(ΩN)

0 (ω; 0)] ∈ P(E). Then, there exists an equilibrium measure νN
θ (ω) ∈

P(P(E)ΩN ):

lim
t→∞
L
[
X(ΩN)(ω; t)

]
= νN

θ (ω), P-a.s. ω (5.6)

satisfying∫
P(E)ΩN

x0 νN
θ (ω; dx) = θ. (5.7)

Moreover, under the law P, νN
θ (ω) is stationary and ergodic under translations in ΩT

N .
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clustering vs. coexistence. To answer the second part of Question 5.5.1, we consider
the following two scenarios for the equilibrium νN

θ (ω):

• Coexistence given the environment ω:

sup
ψ∈Cb(E)

∫
P(E)ΩN

νN
θ (ω)(dx)

[∫
E

ψ2(u)x0(du)−
(∫

E
ψ(u)x0(du)

)2
]
> 0. (5.8)

In words: The variance of the type distribution is positive.

• Clustering given the environment ω:

νN
θ (ω) =

∫
E

δ(δu)
ΩN θ(du). (5.9)

In words: The system grows mono-type clusters that cover the whole ΩN .

We obtain the following dichotomy between clustering and coexistence for N < ∞.

Theorem 5.5.2 (Dichotomy for finite N). Fix N ∈N\{1} and assume that ρξ(ω) := χξ([0, 1], ω)

satisfies

E[ρξ(ω)] = 1, ∃ δ > 0 : δ ≤ ρξ(ω) ≤ δ−1 ∀ ξ ∈ ΩN for P-a.e. ω. (5.10)

(a) Let CN := {ω : coexistence given ω occurs}. Then, P(CN) ∈ {0, 1}.

(b) P(CN) = 1 iff

∑
k∈N0

1
ck + N−1λk+1

k

∑
l=0

λl < ∞. (5.11)

Remark 5.5.1. Criterion (5.11) implies:

• Sublte inteplay between the migration c and resampling/catastrophe λ parameters with respect to
their influence on clustering/coexistence.

• If λl = 0, ∀l ≥ 1 (i.e., no catastrophes), then the criterion reduces to the recurrence condition for
the migration.

idea of proof. Study the lineages of particles (backwards in time). It turns out that the
backwards in time dynamics is in a sense simpler:

• Duality: lineages evolve according to a spatial coalescent with non-local coalescence in random
environment.

This idea is formalized in the next paragraph.
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duality with a spatial coalescent with non-local coalescence in random envi-
ronment. The idea of duality is to relate X = {Xt}t∈R+ with a simpler stochastic process. A
possible formulation is as follows. Find H and Y = {Yt}t∈R+ :

EX0 [H(Xt, Y0)] = EY0 [H(X0, Yt)], for all (X0, Y0), t ∈ R+. (5.12)

In our case, a useful dual is provided by the so-called spatial coalescent with non-local
coalescence in random environment {Yt}t∈R+ . The coalescent can be seen as the backwards-in-
time dynamics of the coalescing lineages in the Cannings process.

• The initial configuration consists of infinitely many singleton families.

• Families move around according to the HRW.

• The coalescence events are driven by the PPP with intensity

dt⊗ dη ⊗
(

N−2kdk
[
Λk(dr)

(
rδ1 + (1− r)δ0

)⊗N
]
(dω)

)
. (5.13)

• At a coalescence event, k ≥ 2 families in Bk(η) coalesce. Immediately afterwards, all
families in Bk are reshuffled (= randomly and simultaneously relocated in within Bk).

biodiversity dichotomy: clustering vs. coexistence. Dichotomy can be understood
from the backwards in time viewpoint:

• If there is a single family in the long run, then there is no biodiversity (clustering).

• If there is more then one family in the long run, there is coexistence.

Exchangeability combined with duality implies that it is enough to consider two coalescing
random walks (Z1

t (ω), Z2
t (ω))t≥0 on ΩN with migration coefficients (ck + λk+1N−(k+1))k∈N0 in

random environment and coalescence at rates (λk = Λk([0, 1]))k∈N0 . The time-t accumulated
hazard for coalescence of this pair reads:

HN(ω; t) = ∑
k∈N0

N−k ∑
η,η′∈ΩN

dΩN (η,η′)≤k

λMCk(η)(ω)
∫ t

0
1{Ys(ω)=η,Y′s(ω)=η′} ds, (5.14)

We can show the following:

Lemma 5.5.1. • limt→∞ HN(t; ω) = ∞ a.s. no biodiversity (clustering).

• limt→∞ HN(t; ω) < ∞ a.s coexistence.

5.6 large space-time scale analysis

Question 5.6.1 (Coarse-grained dynamics). Where does the law of the k-block average converges to?
I.e.,

L
[
k-block average(t · Nk; ω)

]
=⇒

N→+∞
?

Is there a universal limiting law?

In order to answer this question, we perform the large space-time scale analysis.
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large space-time scale analysis: N → ∞ .

• We “separate” slow and fast time scales. This is guaranteed in our model in the limit N → ∞.

• This way, we can analyse the system scale by scale: starting from small scales and working
our way towards larger scales. This can be seen as an orbit of the renormalization group.

• Specifically, consider the macroscopic observables: block averages of order k ∈ Z+

Y (N )
η ,k ( t N k ; ω ) =

1
N k ∑

ζ∈Bk (η )

X (Ω N )
ζ ( t N k ; ω ) , η ∈ Ω N , k ∈ Z+ (5.15)

• The Cannings model on a fully connected geographical space (mean field or single scale
situation), see Figure 5.5, decorellates (propagation of chaos) in the long run and each
colony follows a McKean-Vlasov process.

Figure 5.5: Mean-field migration of individuals between the N = 3 colonies (rate c/N random walk on
the full graph)

mckean-vlasov limiting dynamics. To describe the limiting measure-valued McKean-
Vlasov dynamics, we need an algebra of test functions: B ⊆ Cb(M1(E), R) with G ∈ B:

G(x) =
∫

En
x⊗n(du) ϕ(u), x ∈ M1(E), n ∈N, ϕ ∈ Cb(En, R). (5.16)

The Generator turns out to be

(Lc,d,Λ
θ G)(x) = c

∫
E
(θ − x) (da)

∂G(x)
∂x

[δa]← [drift]

+ d
∫

E

∫
E

Qx(du, dv)
∂2G(x)

∂x2 [δu, δv]← [Fleming-Viot diffision]

+
∫
[0,1]

Λ∗(dr)
∫

E
x(da)

[
G
(
(1− r)x + rδa

)
− G(x)

]
← [jumps], G ∈ B,

(5.17)



72 spatial cannings model in random environment

where

Qx(du, dv) = x(du) δu(dv)− x(du) x(dv). (5.18)

A Markov process with the limiting generator we call the CΛ-processes with immigration-
emigration and denote it by

Zc,d,Λ
θ =

(
Zc,d,Λ

θ (t)
)

t≥0, Zc,d,Λ
θ (0) = θ. (5.19)

5.7 renormalization and multi-scale analysis

Theorem 5.7.1 (Behaviour of the macroscopic observables). Suppose that for each N the random
field X(ΩN)(ω; 0) is the restriction to ΩN of a random field X(ω) indexed by Ω∞ =

⊕
N N that is i.i.d.

with single-component mean θ ∈ P(E). Then, for P-a.e. ω and every k ∈N and η ∈ Ω∞,

lim
N→∞

L
[(

Y(ΩN)
η,k (ω; tNk)

)
t≥0

]
= L

[(
Zck ,dk ,ΛMCk()(ω)

θ (t)
)

t≥0

]
, (5.20)

where

• Volatility constants: d = (dk)k∈Z+
, are given recursively by

d0 = 0, dk+1 = ELρ

[
ck(µkρ + dk)

ck + (µkρ + dk)

]
, k ∈ Z+, (5.21)

where µk = λk/2 and L[ρ] = L[ρ0].

• N.B. The formula (5.21) is an average of a random Möbius transformation. For a detailed
analysis of the iterations of (5.21), we refer to Greven et al. [101].

heuristic derivation of the formula for volatilities. Formula (5.21) can heuristi-
cally be understood as follows:

• The space-time scales separate, as N → ∞. Therefore, it is enough to consider the 1-block
averages.

• Due to duality it is enough to focus on study the coalescing lineages.

• Total coalescence rate = volatility.

• At space-time scale Nt, only pairs of lineages can possibly meet (cf. Limic & Sturm
[142] for a related setup).

• The lineages coalesce at the rate λ(η,0)(ω) = Λ(η,0)((0, 1])(ω), if they are in the same
colony.

• Probability to migrate away before coalescence is 2c0/(2c0 + λ(η,0)(ω)).

• Therefore, the average total coalescence rate equals

E

[
2c0λ0ρ(ω)

2c0 + λ0ρ(ω)

]
. (5.22)
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random environment facilitates biodiversity. The volatility dk in the random envi-
ronment can be sandwiched between:

• the volatility d0
k in the zero environment (Lρ = δ0, i.e., the system without resampling)

• the volatility d1
k in the average environment (Lρ = δ1, i.e., the system with average resam-

pling).

Theorem 5.7.2 (Randomness lowers volatility). Assume the environment is non-deterministic. If
d0

0 = d0 = d1
0, then

d0
k < dk < d1

k , k ∈N. (5.23)

Proof. Jensen’s inequality.

multi-scale analysis. When viewed on multiple time scales, the block averages converge
to a time inhomogeneous measure-valued Markov chain. The transition kernel of the Markov
chain is given by the quasi-equilibrium with the initial condition being the current state of the
chain.

Theorem 5.7.3 (Multi-scale behaviour). Let (tN)N∈N be such that limN→∞ tN = ∞ and limN→∞ tN/N =

0. Then, for P-a.e. ω, every j ∈N and every η ∈ Ω∞,

lim
N→∞

L
[(

Y(ΩN)
η,k (ω; tN Nk)

)
k=−(j+1),−j,...,0

]
= L

[(
M(j)

η,k(ω)
)

k=−(j+1),−j,...,0

]
, (5.24)

where M(j)
η (ω) = (M(j)

η,k(ω))k=−(j+1),−j,...,0 is the time-inhomogeneous Markov chain with initial state

M(j)
η,−(j+1)(ω) := θ, (5.25)

and transition kernel from time −(k + 1) to −k given by

Kη,k(ω; θ, ·) := ν
ck ,dk ,ΛMCk(η)(ω)
θ (·). (5.26)

5.8 related research

For an introduction to the theory of measure-valued stochastic population dynamics, we refer
to, e.g., Dawson [67] and Etheridge [85].

random systems in ultrametric spaces. A recent review of dynamics on is Dawson &
Gorostiza [64].

spatial cannings model. Spatial Cannings models on Euclidean spaces were suggested
in Barton et al. [21] and Etheridge [86] and further studied in [26].



74 spatial cannings model in random environment

multi-scale analysis of stochastic processes on hierarchical networks. Renor-
malization is a key method to analyze large space-time behavior and universality in interacting
particle systems Kadanoff [125]. For a review in the context of interacting population models
before 2005, we refer to Greven [100]. The closest in spirit work to this chapter is Dawson et al.
[65], where a hierarchically interacting Fleming-Viot process have been studied using multi-scale
methods. Recent monograph Dawson & Greven [69] focuses on the spatial Fleming-Viot model
with selection and mutation.

Several interesting IPS and related stochastic processes have been analyzed using renormal-
ization methods, e.g., the contact process by Athreya & Swart [14], Kuramoto model by Garlaschelli
et al. [96], percolation by Dawson & Gorostiza [63] and Koval et al. [132] and random walks on
percolation clusters by Dawson & Gorostiza [64].

5.9 summary and outlook

We summarize results of this chapter on the hierarchical Cannings model in random environ-
ment as follows:

• There is the clustering vs. local coexistence dichotomy in the long-time behavior of the model.
It is formulated in terms of the migration and resampling parameters c, λ for finite N.

• We have identified the space-time scaling behaviour in the hierarchical mean-field limit
N → ∞.

• It turns out that the volatilities decrease in the inhomogeneous environment; the clusters
grow slower.

• The fluctuations of the environment reduce clustering. This implies an increased biodiver-
sity.

open problems:

• Recover the measure-valued process studied in this chapter as a limit of discrete IPS.

• Relax condition (5.4).

• Study a model without reshuffling, when a catastrophe occurs, cf. 5.4.

• Extend the model and the analysis to cover the case of the Ξ-Cannings models, in which
several individuals can simultaneously make a macroscopic contribution in the next
generation, see, e.g., Birkner et al. [29].

• Extend the model and the analysis to cover other genalogical forces like mutation,
selection and recombination, see, e.g., Dawson & Greven [69].

• Extend the model and the analysis to “continuum” hierarchical geographical spaces, see,
e.g., Evans & Fleischmann [87] and Greven et al. [102].

• Extend the model and analysis to cover inhomogeneous geographical spaces using models
of complex networks, see, e.g., Aldous [3] and Allen et al. [6].
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What are the emerging global patterns in complex systems?
How do they come about from the local behavior of the
elements? In the last 20 years, complex networks became
a key tool to model real-world complex systems in the
sciences. Yet, the majority of networks evolve over time and
this can have a substantial effect on the processes unfolding
on them. How can one model large interacting particle
systems on evolving networks?
Starting from some popular modeling assumptions like
Markovianity, vertex exchangeability and subsampling con-
sistency, we study models of evolving large weighted net-
works. In the large network limit, these lead to Markovian
exchangeable arrays. This is a step towards understand-
ing the limits of interacting particle systems on evolving
networks.

This chapter is based on publication 8a.

focus of this chapter. In this chapter, we extend the results of Crane [57, 58] on Marko-
vian dyanmics of graph limits to the case of weighted networks. This is a step towards under-
standing the probabilistic limiting objects in large IPS on evolving networks.

background. In the last 20 years, complex networks became a key tool to model real-world
complex systems in the sciences (e.g., Barabási [17], Dorogovtsev & Mendes [79], and New-
man [158]). Yet, the majority of networks evolve over time and this can have a substantial
effect on the processes unfolding on them (Holme & Saramäki [109], Porter & Gleeson [170,
Chapter VII], Lambiotte & Masuda [135, Chapter 6]). Moreover, the influence can also go the
other way around: processes happening on a network can affect the evolution of the network
itself. This leads to what is called coevolution in adaptive networks (e.g., Gross & Sayama [103])
or more generally complex adaptive systems (e.g., Holland [108] and Levin [139]). Examples
include epidemiological and ecological networks, neural networks, systems biology networks,
social networks, financial markets, etc. In all these contexts, there is a great deal of uncer-
tainty/volatility in the structure and dynamics of the complex system. Thus, it is natural to
use stochastic processes on random graphs as the modeling framework (e.g., Aldous [3], Durrett
[81], and van der Hofstad [188]). Nonetheless, the mathematical theory for stochastic processes
on evolving networks is largely lacking.

current scientific discourse. A large class of complex systems can be modeled by a
“population” of particles (or agents) living on the nodes of a network. As time progresses, these

75
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particles interact with each other by influencing each other’s state (and possibly the underlying
network itself) at given rates, where a state represents a particular property of the particle, e.g.,
an opinion or an infection status. Such interacting particle systems (IPS) is a key object of study
in probability theory (see, e.g., Liggett [141]) and in the sciences (where they are known under
various names, e.g., agent-based models [55, 84]). However, the majority of the mathematics
research on IPS so far has concentrated on very regular deterministic underlying networks
such as lattices or Euclidean spaces. Only in the last several years, the need to study IPS on
complex networks has been advocated in the mathematics literature (see, e.g., Aldous [3]).
Finally, very recently, stochastic processes on evolving networks have experienced a surge of
interest in the sciences (see, e.g., Lambiotte & Masuda [135] and Porter & Gleeson [170]). Yet,
the approaches there are mostly based on non-rigorous methods and the mathematical theory
is still in its infancy.

In parallel, understanding the limiting behavior of the probabilistic models of complex net-
works and stochastic processes on them in the large-sample limit is critical to enabling statistical
modeling (Kolaczyk & Csárdi [128]) and inference algorithms with good theoretical properties
such as rigorous performance guarantees. This emerging area of research at the interface
between probability theory and mathematical statistics is full of challenging open problems, see,
e.g., Crane [56]. In particular Crane [56, Chapter 11], focuses on models of dynamic networks
and reviews several papers of the author including Crane [57, 58].

6.1 exchangeable random arrays

We will consider arrays with values in an arbitrary Polish space S. This space will be endowed
with its Borel σ-field B(S) and a compatible metric dS, which we assume to be bounded by 1.
We write P(S) for the set of all probability measures on (S,B(S)) endowed with the topology
of weak convergence, which is a Polish space as well.

A random S-valued array is a collection Y = (Yij)ij∈N of S-valued random variables on some
probability space (Ω,A, P). Otherwise said, Y is S := SN2

-valued random variable. We endow
S with the product topology and the compatible metric dS(y, y′) = ∑i,j∈N 2−i−jdS(yij, y′ij).

For an arbitrary set A ⊂ N, we define Y|A = (Yij)i,j∈A to be the restriction of Y to the
index set A. In particular, with [n] := {1, . . . , n}, Y|[n] is its restriction to the first n coordinates,
Y|[n] ∈ Sn := Sn2

.
Similarly, for every probability distribution ν on S (or on Sm, m ≥ n), we denote by ν|[n]

its image under the canonical restriction from S (or Sm) to Sn. It is a known fact that a
sequence of probability measures (µk)k≥1 on S converges weakly to µ ∈ P(S), iff all restrictions
µk|[n] ∈ P(Sn), converge weakly in P(Sn), or equivalently µk( f ) → µ( f ), for every bounded
continuous cylinder function f on S.

Let Σ be the set of all permutations of integers, that is the set of all bijections of N which fix
all but finitely many values; Σn denotes the set of all permutations of [n]. For an array Y and
π = (π1, π2) ∈ Σ2, we define a new array Yπ by Yπ

ij = Yπ1(i)π2(j). For π ∈ Σ, we also define Yπ

by Yπ
ij = Yπ(i)π(j). An array Y is called exchangeable if

Y law
= Yπ , for every π ∈ Σ2. (6.1)
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An array Y is called weakly exchangeable1 if it is symmetric (i.e., Yij = Yji) and

Y law
= Yπ, for every π ∈ Σ. (6.2)

The key result of the theory of random arrays is their characterisation due to Aldous [4] and
Hoover [110] which can be viewed as a “two-dimensional version” of de Finetti’s theorem.

Theorem 6.1.1. (a) If (Yij)i,j∈N is an S-valued exchangeable array, then there exists a measurable

function f : [0, 1]4 → S such that Y law
= Y?, where

Y?
ij = f (U, Ui, U′j , Uij), (6.3)

and U, (Ui)i∈N, (U′i )i∈N, and (Uij)i,j∈N are independent collections of Uniform([0, 1]) i.i.d. random
variables.

(b) If (Yij)i,j∈N is an S-valued weakly exchangeable array, then the analogous statement holds with a
function f : [0, 1]4 → S satisfying f (·, x, y, ·) = f (·, y, x, ·), and with

Y?
ij = Y?

ji = f (U, Ui, Uj, Uij), i ≥ j. (6.4)

The representing function f of the Aldous-Hoover theorem is not uniquely determined.
E.g., in the case (a), if two functions f and f ′ satisfy f ′(a, b, c, d) = f (T1(a), T2(b), T3(c), T4(d))
for some measure preserving transformations T1, . . . , T4 of [0, 1], then the corresponding
exchangeable arrays have the same distribution.

A (weakly) exchangeable array is called dissociated if

(Yij : i, j ≤ n) is independent of (Yij : i, j > n), for each n. (6.5)

It is obvious that if the function f in the representation of Theorem 6.1.1 does not depend on
the first coordinate, then Y is dissociated. Converse statement hold as well, see Corollary 14.13

in [5].
Dissociated arrays play a similar role as i.i.d. sequences do in the theory of exchangeable

sequences: Every (weakly) exchangeable array is a mixture of (weakly) exchangeable dissociated
arrays. To state this more formally, we need more definitions.

A set A ∈ B(S) is called exchangeable if A = Aπ for every π ∈ Σ2, where Aπ = {yπ : y ∈ A}
and yπ

ij = yπ1(i)π2(j). The collection ES ⊂ B(S) of all exchangeable sets is called the exchangeable
σ-field. For an exchangeable array Y, we define EY = {Y−1(A) : A ∈ ES}. We use DS ⊂ P(S) to
denote the set of all distributions of dissociated exchangeable arrays, which is a closed subset
of P(S). We write D̃S for the set of all distributions of dissociated weakly exchangeable arrays.

The following proposition follows from [5, Proposition 14.8 and Theorem 12.10].

Proposition 6.1.1. (a) A (weakly) exchangeable array Y is dissociated iff P(A) ∈ {0, 1} for every
A ∈ EY, that is its exchangeable σ-field is P-trivial.

(b) Let Y be a (weakly) exchangeable array and α its regular conditional distribution given EY. Then,
α(ω) ∈ DS (resp. α(ω) ∈ D̃S) for P-a.e. ω. Moreover, the distribution µY of Y can be written as

µY(·) =
∫
DS

ν(·)ΛY(δν) (6.6)

for a uniquely determined probability measure ΛY on DS (resp. D̃S).

1 The terminology is slightly misleading: due to the symmetry requirement, the weak exchangeability is not weaker
than the exchangeability
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An important feature of exchangeable arrays is that regular conditional distribution α of Y
given EY can, a.s., be recovered from a realisation of Y by the following procedure. For m ≥ n,
and y ∈ S, let ty,n

m ∈ P(Sn) be defined by

ty,n
m =

1
((m)n)2 ∑

ψ1,ψ2

δ(yψ1(i),ψ2(j))i,j∈[n]
, (6.7)

where the sum runs over all injections ψ1, ψ2 : [n]→ [m] and

(m)n = m(m− 1) . . . (m− n + 1). (6.8)

Measure ty,n
m can be viewed as the empirical distribution of n× n sub-arrays in the array y|[m].

We further define

ty,n = lim
m→∞

ty,n
m (6.9)

whenever this limit exists in the weak sense, and set |y| = (ty,n)n≥1 whenever all ty,n, n ≥ 1,
exist.

It follows from the construction that the probability measures ty,n
m , n = 1, . . . , m, are consistent

in the sense that ty,n
m |[n−1] = ty,n−1

m for every 2 ≤ n ≤ m. This consistence transfers to the limit,
that is

ty,n|[n−1] = ty,n−1, for every n ≥ 2. (6.10)

Therefore, in view of Kolmogorov’s extension theorem, |y|, when it exists, can be viewed as an
element of P(S).

In the weakly exchangeable case, we set t̃y,n
m by

t̃y,n
m =

1
(m)n

∑
ψ

δ(yψ(i),ψ(j))i,j∈[n]
, (6.11)

where the sum runs over all injections π from [n] to [m]. We then define t̃y,n and |y| = (t̃y,n)n≥1

analogously as in the exchangeable case.
The next proposition establishes the connection between |Y| and its regular conditional

distribution α.

Proposition 6.1.2. (a) Let Y be a (weakly) exchangeable array and α its regular conditional distri-
bution given EY. Then, for P-a.e. ω, |Y(ω)| exists and equals to α(ω). In particular, |Y(ω)| ∈ DS
(resp. |Y(ω)| ∈ D̃S), P-a.s.

(b) If Y is dissociated, then |Y| exists a.s. and coincides with the distribution of Y.

Remark 6.1.1. For the rest of the chapter, it will be suitable to extend the definition of |y| to all possible
y ∈ S. For those y ∈ S for which some of the limits ty,n do not exist, we define |y| = ∂, where ∂ /∈ P(S)
is an arbitrary symbol. In addition, for y such that |y| exists but is not in DS, we set |y| = ∂ as well. By
Proposition 6.1.2, we can then view |y| as a map from S to D?

S := DS ∪ {∂}.

As can be seen from the previous results, the differences between exchangeable and weakly
exchangeable arrays are mostly a matter of notation. That is why, from now on, we mostly
focus on the exchangeable case; the corresponding statements for the weakly exchangeable
case can be derived easily.



6.2 relation to exchangeable graphs and graph limits 79

6.2 relation to exchangeable graphs and graph limits

The above construction is a straightforward generalisation of the graph limit construction from
the theory of dense random graphs, which we recall briefly.

A (vertex) exchangeable random graph is a random graph G with countably many vertices
labelled by N whose distribution is invariant under permutations of the labels. By considering
the adjacency matrix (Gij)i,j∈N of this graph, it can be viewed as a {0, 1}-valued weakly
exchangeable array whose diagonal entries are 0.

Graph limits were introduced by Lovász and Szegedy [143] (see also Borgs & Chayes [37])
while studying sequences of dense graphs. They encode the limiting density of finite subgraphs
in an infinite graph. Formally, let Gn be the set of all graphs with n vertices labelled by [n]. For
m ≥ n and F ∈ Gn and G ∈ Gm, let Hom(F, G) be the number of injections ψ : [n]→ [m] such
that Gψ(i)ψ(j) = Fij for all i, j ∈ [n]. Then, for every infinite graph G with vertices labelled by N,
one can define the “density of F in G”

t(F, G) = lim
m→∞

Hom(F, G|[m])

(m)n
, F ∈ Gn. (6.12)

It can be checked easily that t(·, G), restricted to Gn, if it exists, is a probability measure on
Gn. This probability measure, in fact, coincides with the measure tG,n that was introduced in
(6.11), when graphs are identified when their adjacency matrices.

By construction, every t(·, G) is invariant under action of Σ,

t(Fπ, G) = t(F, G), for every F ∈ Gn, π ∈ Σn. (6.13)

Similarly, the following consistency relation, corresponding to (6.10) above, holds:

t(F, G) = ∑
F̄∈Gm :F̄|[n]=F

t(F̄, G). (6.14)

That means that (t(F, G))F∈∪nGn , if it exists for every F ∈ ∪nGn, can be viewed (again in the
sense of Kolmogorov’s extension theorem) as a distribution of a random graph, which must be
exchangeable due to (6.13). This distribution corresponds to |y| of the previous section.

6.3 dynamics of exchangeable arrays

We now turn to the main goal of this chapter, the investigation of processes X = (X(t))t∈T

taking values in the space S of two-dimensional S-valued arrays. Here, T denotes the set of
times which can be both discrete, T = N0, or continuous T = [0, ∞).

In the continuous-time case, we assume that the sample paths of X are càdlàg. Since we
endowed S with the product topology, this is the case iff every restriction X|[n] has càdlàg paths
in Sn, or equivalently, t 7→ Xij(t) is càdlàg for every i, j ∈ N. We write, D(S) for the space of
all càdlàg functions from T to S, endowed with the usual Skorokhod topology. The previous
reasoning implies that D(S) = (D(S))N2

.
By convention, every function on T is càdlàg in the discrete-time case. This allows us to use

the adjective ‘càdlàg’ without specifying which case we consider.
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A S-valued process X is called exchangeable, if

Xπ := (Xπ(t))t∈T
law
= X, for every π ∈ Σ2. (6.15)

Equivalently, viewing X as an array of functions (t 7→ Xij(t))i,j∈N, it is often useful to regard
X as an exchangeable D(S)-valued array. Corresponding to this point of view, we define an
exchangeable σ-field, EX, associated to the whole process,

EX = {X−1(A) : A ∈ ED(S)}, (6.16)

where ED(S) is defined as ES with D(S) playing the role of S.
The process X is a Markov process when the Markov property holds, that is the past (X(s))s≤t

and the future (X(s))s≥t are conditionally independent given the present X(t) for all t ∈ T.
The following proposition gives criteria implying the exchangeability of a Markov process. Its
straightforward proof is left to the reader.

Proposition 6.3.1. Let X be an S-valued Markov process with transition probability kernel

ps,t(x, A) := P[X(t) ∈ A | X(s) = x], s < t ∈ T, A ∈ B(S). (6.17)

Then, X is exchangeable if

(a) its initial state X(0) is an S-valued exchangeable array, that is

X(0)π law
= X(0). (6.18)

(b) its transition kernels are invariant under action of Σ2, that is for every π ∈ Σ2, s < t ∈ T, x ∈ S,
and A ∈ B(S)

ps,t(xπ , Aπ) = ps,t(x, A). (6.19)

For convenience, we mostly omit “S-valued” from the terminology and say, e.g., “exchange-
able Markov process” instead of “S-valued exchangeable Markov process”.

We now study how exchangeable Markov processes interact with the “projection” operation
S 3 y 7→ |y| ∈ D?

S, cf. Remark 6.1.1. Our first result implies that the projection of X(t) is in
DS, a.s., simultaneously for all t ∈ T, that is one can, a.s., project the process X on the space
DS of (the distributions of) dissociated exchangeable arrays, cf. Proposition 6.1.2. Remark that
Markov property is not assumed.

Theorem 6.3.1. Let X be an exchangeable process with càdlàg sample paths. Then, P-a.s., |X(t)| ∈ DS
for all t ∈ T.

Proof. In the discrete-time case, it suffices to observe that X(t) is an exchangeable S-valued
array for every t ∈ N0. By Proposition 6.1.2, |X(t)| ∈ DS, P-a.s., and the claim follows, since
N0 is countable.

In the continuous-time case, we view X as a D(S)-valued exchangeable array, cf. the remark
below (6.15), and assume that this array is dissociated first. Using Proposition 6.1.2 with D(S)
in place of S, recalling that |Y| there denotes the sequence of limits (tY,n)n∈N, we see that
for every n ∈ N, the sequence tX,n

m of probability measures on D(Sn) converges weakly as
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m→ ∞ P-a.s. to some tX,n ∈ P(D(Sn)). Moreover, since we assume that X is dissociated, tX,n

is a.s. deterministic and coincides with the distribution of X|[n], by Proposition 6.1.2(b).
Let JX

n be the (deterministic) set of times defined by

JX
n =

{
t ∈ T : tX,n({x ∈ D(Sn) : t is a jump point of x}

)
> 0

}
. (6.20)

By the general theory of probability measures on Skorokhod spaces, see Chapter 15 in [28],
JX
n is at most countable. Therefore, using the same argument as in the discrete case, P-a.s.,
|X(t)| ∈ DS for all t ∈ ∪n JX

n .
For t ∈ T \ ∪n JX

n , the coordinate projections φt : D(Sn) 3 x 7→ x(t) ∈ Sn are tX,n-a.s. con-
tinuous. By [28, Theorem 5.1], the weak convergence of tX,n

m then implies the existence of
the weak limit tX(t),n := φt ◦ tX,n = limm→∞ φt ◦ tX,n

m = limm→∞ tX(t),n
m . The limit measures

tX(t),n ∈ P(Sn) are consistent and dissociated, as tX,n
m are, and thus determine a probability

measure |X(t)| ∈ DS, P-a.s., simultaneously for all t ∈ T \ ∪n JX
n .

The last two paragraphs together imply that for a dissociated X, P[|X(t)| ∈ DS for all t ∈
T] = 1.

A general exchangeable càdlàg process X can be written as a mixture of dissociated processes
by conditioning on EX, by Proposition 6.1.1. Therefore,

P[|X(t)| ∈ DS for all t ∈ T]

=
∫

Ω
P[|X(t)| ∈ DS for all t ∈ T | EX](ω)P(δω).

(6.21)

Under P[· | EX], the law of X is dissociated, and thus the integrand equals 1, a.s., by the
previous paragraph. This completes the proof.

From Proposition 6.1.2, we know that |X(t)| is a regular conditional distribution of X(t)
given its own exchangeable σ-field EX(t). In general, however, EX(t) does not need to agree with
EX. We now show that |X(t)| is also a regular conditional distribution of X(t) given EX.

Lemma 6.3.1. (a) For every t ∈ T,

EX(t) ⊂ EX.

(b) Let αX be the regular conditional distribution of X given EX. Then, P-a.s.,

αX(ω, X(t) ∈ ·) = |X(t)|(ω, ·). (6.22)

or, equivalently, denoting by φt the projection D(S) 3 x 7→ x(t) ∈ S,

φt ◦ αX = |X(t)|. (6.23)

Proof. (a) Let B ∈ ES. Then φ−1
t (B) ∈ ED(S), and thus X−1(φ−1

t (B)) ∈ EX. In addition,

X−1(φ−1
t (B)) = {ω ∈ Ω : X(ω) ∈ φ−1

t (B)}
= {ω ∈ Ω : (φt ◦ X)(ω) ∈ B}
= {ω ∈ Ω : X(t)(ω) ∈ B} = X(t)−1(B).

(6.24)

Since, by definition, EX(t) = {X(t)−1(B) : B ∈ ES}, it follows that EX(t) ⊂ EX, as claimed.
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(b) Heuristically, the proof uses the fact that |X(t)| is a dissociated distribution, and dissoci-
ated distributions are extremal in the set of all exchangeable distributions.

By properties of regular conditional distributions, for every C ∈ EX, and every bounded
measurable f : S→ R,

E[1C f (X(t))] =
∫

Ω
1C(ω)αX(ω, f ◦ φt)P(δω). (6.25)

By conditioning on EX(t), we obtain

(6.25) =
∫

Ω
P(δω′)

∫
Ω

P(δω | EX(t))(ω
′)1C(ω)αX(ω, f ◦ φt). (6.26)

Choosing C ∈ EX(t) ⊂ EX and using that 1C(ω) = 1C(ω
′), P(· | EX(t))(ω

′)-a.s., in this case, we
get

(6.25) =
∫

Ω
P(δω′)1C(ω

′)
∫

Ω
P(δω | EX(t))(ω

′)αX(ω, f ◦ φt), (6.27)

Observe that, as function of ω′, the inner integral is EX(t) measurable. Therefore,∫
Ω

P(δω | EX(t))(φt ◦ αX)(ω) (6.28)

is a version of regular conditional distribution of X(t) given EX(t), that is it equals |X(t)|, P-a.s.
However, |X(t)| is dissociated, and thus extremal in the set of all exchangeable probability
distributions. Therefore, necessarily, (φt ◦ αX)(ω) = |X(t)|(ω) must hold true for P(· | EX(t))-
a.e. ω. This then implies that φt ◦ αX = |X(t)|, P-a.s., as claimed.

Theorem 6.3.2. Let X be an exchangeable process with càdlàg sample paths. Then, the projection
|X| = (|X(t)|)t∈T has P-a.s. càdlàg sample paths.

Theorem 6.3.3. Let X be an exchangeable Markov process with càdlàg sample paths. Then, |X| is a
D?

S-valued Markov process with a.s. càdlàg sample paths.

6.4 jumps of discrete-time markov processes

In this and the next section, we study in detail the structure of the jumps of time-homogeneous
exchangeable Markov processes. We first consider processes in discrete time, where the situation
is rather simple.

Lemma 6.4.1. Let X be an exchangeable Markov process in discrete time. Then, the array Jij(t) =

1{Xij(t− 1) 6= Xij(t)} encoding its jumps at time t ≥ 1 is also exchangeable. As consequence, only the
following two possibilities occur a.s.

• X is constant at t, that is Xij(t− 1) = Xij(t) for all (i, j) ∈N2.

• There is a positive proportion of entries which jump, that is

lim
n→∞

1
n2 ∑

1≤i,j≤n
1{Xij(t− 1) 6= Xij(t)} > 0. (6.29)
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6.5 restrictions of markov exchangeable processes are not
markov

If one is interested not only in the occurrence of jumps, but also in their “sizes”, this argument
can be pushed even further, similarly to [57]. For t ≥ 1, consider S2-valued array Zij :=
(Xij(t− 1), Xij(t)), which is again exchangeable. By Proposition 6.1.2 (with S2 in place of S),
for every n ∈N, the limit tZ,n ∈ P(S2

n) exists a.s.
The measure tZ,n can be used to construct a new Markov transition kernel qn on Sn, by

disintegrating tZ,n with respect to its first marginal tX(t−1),n,

tZ,n(δy1, δy2) = tX(t−1),n(δy1)qn
t−1,t(y1, δy2), (6.30)

or, in the case when S is finite, simply by defining

qn
t−1,t(y1, y2) =

tZ,n({(y1, y2)})
tX(t−1),n({y1})

, y1, y2 ∈ Sn, (6.31)

(and qn
t−1,t(y1, y2) = δy1,y2 in the case when tX(t−1),n({y1}) = 0). Since, by Proposition 6.1.2,

tX,n agrees with the distribution of X|[n] given EX, it is tempting to interpret the kernels qn as
transition kernels of X|[n] (at least conditionally on EX), as is done in [57]: Proposition 4.8 of
[57] contains, among others, the following claim (stated in the notation of the present chapter):

Let X = (Xt)t∈T be a time-homogeneous exchangeable Markov process, with T
being finite. Conditioned on EX, X is dissociated, and, moreover, for every n ∈N,
the restriction X|[n] of X to Sn is (conditionally) a time-inhomogeneous Markov
chain with transition probabilities qn

t−1,t.

We now provide a counterexample for a part of this claim, namely that X|[n] is (conditionally)
Markov. We will also see that the transition kernel of X|[n] is not qn.

Example 6.5.1. We work in the setting of exchangeable random graphs, similarly as in [57]. That
is Xij(t) denotes the adjacency matrix of a random exchangeable graph, which can thus be viewed as
{0, 1}-valued weakly exchangeable array with zeros on the diagonal. We fix T = {0, 1, . . . , N} for a
large N.

To construct the process, let ξi, i ∈N, be i.i.d. Bernoulli( 1
2 ) random variables. In the initial configu-

ration X(0), we draw an edge between vertices i 6= j (i.e., we set Xij(0) = 1) with probability pij(ξ),
where

pij(ξ) =


1
4 , if ξi = ξ j = 0,
1
2 , if ξi 6= ξ j,
3
4 , if ξi = ξ j = 1.

(6.32)

All edges are drawn independently.
To define the dynamics, for every x ∈ S, we define

ξi(x) = 1
{

lim sup
n→∞

1
n

n

∑
j=1

xij >
1
2

}
. (6.33)

Given the configuration of X at time t, we construct X(t + 1) as follows
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• If ξi(X(t)) = ξ j(X(t)) = 0, then Xij does not change, that is Xij(t + 1) = Xij(t).

• Otherwise, Xij is refreshed according to pij(X(t)), that is Xij(t) is a Bernoulli(pij(ξ(X(t)))
random variable, chosen independently of all other Xij(t)’s.

It is easy to see that the process X is weakly exchangeable. And, by construction, it is obviously
Markov. In addition, the law of large numbers implies that ξi(X(0)) = ξi a.s., and thus X(1), and
inductively also X(t), t ≥ 1, have the same distribution as X(0).

The exchangeable σ-field EX is P-trivial in this example, since X is dissociated by construction. Hence,
conditioning on EX does not have any effect.

On the other hand, the functions ξi(X(t)) cannot be determined from any finite restriction X(t)|[n].
That is, ξ’s are “hidden variables” for the restriction X|[n], and while conditionally on ξ, X|[n] is Markov,
it is not Markov unconditionally.

To prove this, fix n = 2, that is consider only the state of the edge connecting the vertices 1 and
2. Then, by an easy computation taking into account all possible values of ξ1 and ξ2, we obtain that
P(X12(t + 1) = 1 | X12(t) = 1) = 21

32 . On the other hand, P(X12(N) = 1 | X12(t) = 1, ∀t < N) can
be made arbitrarily close to one by choosing N large, because if we know that X12(t) = 1 for all t < N,
then very likely ξ1 = ξ2 = 0 and thus X12 never flips:

P(X12(N) = 1 | X12(t) = 1, ∀t < N) =
P(X12(N) = 1, ∀t ≤ N)

P(X12(N) = 1, ∀t < N)

=
1
4 ·

1
4 · 1 +

1
2 · (

1
2 )

N + 1
4 · (

3
4 )

N

1
4 ·

1
4 · 1 +

1
2 · (

1
2 )

N−1 + 1
4 · (

3
4 )

N−1
N→∞−−−→ 1.

(6.34)

This implies that X12 is not Markov.

Remark 6.5.1. (a) On the technical level, the problem with the argument in [57] is: The relation (14)
therein, which gives certain consistency for the kernels qn, does not hold true, in general. This can
hinder the Markov property of the finite restrictions as shown in Example 6.5.1.

(b) However, in Section 6.7 (see Theorem 6.7.1), we show that under the additional assumption
that the “global” Markov process X has the Feller property (cf., Definition 6.7.1), all the “local”
restrictions X|[n] are indeed Markov (and Feller). See also Remark 6.7.1.

6.6 jumps of continuous-time markov processes

We now study exchangeable Markov processes in continuous time. Similarly as in discrete time
(see Lemma 6.4.1), we describe the possible jumps of this process. The structure here is richer,
because the process is indexed by an uncountable set of times. So, certain events which have
probability 0 in the discrete settings can occur.

Theorem 6.6.1. Let X be exchangeable Markov process with càdlàg paths in continuous time, and let
J ⊂ (0, ∞) be the (random) set of times when t 7→ Xt is discontinuous. Then, a.s., J can be written as a
disjoint union J = J1 ∪̇ J2 ∪̇ J3, where

• J1 is the set of times, where a positive proportion of entries of X jumps,

J1 :=
{

t > 0 : lim
n→∞

1
n2 ∑

1≤i,j≤n
1{X−ij (t) 6= Xij(t)} > 0

}
, (6.35)
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• J2 is the set of times, where a positive proportion of entries in one row or column of X jumps,
J2 = J2,c ∪̇ J2,r with

J2,r =
{

t > 0 : ∃!i ∈N s.t. X−i′ j(t) = Xi′ j(t), ∀i′ 6= i, j ∈N,

and lim
n→∞

1
n

n

∑
j=1

1{X−ij (t) 6= Xij(t)} > 0
}

,
(6.36)

J2,c =
{

t > 0 : ∃!j ∈N s.t. X−ij′(t) = Xij′(t), ∀j′ 6= j, i ∈N,

and lim
n→∞

1
n

n

∑
i=1

1{X−ij (t) 6= Xij(t)} > 0
}

,
(6.37)

• J3 is the set of times, where a unique entry jumps,

J3 =
{

t > 0 : ∃! i, j ∈N s.t. Xij is discontinuous at t, and

Xi′ j′ is continuous at t, ∀(i′, j′) 6= (i, j)
}

.
(6.38)

From Theorem 6.6.1, we deduce the following claim about the discontinuities of the projection
|X|.

Corollary 6.6.1. Let J|X| be the set of times when t 7→ |X(t)| is discontinuous. Then, J|X| ⊂ J1, where
J1 is as in Theorem 6.6.1.

The inclusion in the previous theorem might be strict. As an example, consider the process
started from Xij(0) being i.i.d. Bernoulli( 1

2 ), where all entries are refreshed simultaneously by
an independent i.i.d. Bernoulli( 1

2 ) array at times of jump of a standard Poisson process Nt.
In this case, for every t ≥ 0, |X(t)| is the distribution of the i.i.d. Bernoulli( 1

2 ) array, that is
J|X| = ∅. On the other hand, J1 agrees with the set of jumps of Nt.

6.7 the feller property

In the last part of this chapter, we discuss the conditions under which exchangeable S-valued
Markov processes in continuous time have the Feller property. Recall the following.

Definition 6.7.1. A time-homogeneous S-valued Markov process with transition kernels pt(·, ·) is
called Feller if

(a) For every g ∈ Cb(S), t ≥ 0 and y ∈ S, the map x 7→
∫

g(y)pt(x, δy) is continuous.

(b) For every x ∈ S and g ∈ Cb(S),

lim
t↓0

∫
g(y)pt(x, δy) = g(x). (6.39)

It is easy to construct exchangeable Markov processes that are not Feller. E.g., the process
considered in Example 6.5.1 does not satisfy (a) of the Feller property. To see this, take
g(y) = y12, y ∈ S, and observe that for every t > 0 there is εt > 0 such that if x12 = 1, then

∫
g(y)pt(x, δy)

= 1, if ξ1(x) = 0 and ξ2(x) = 0,

< 1− εt, otherwise.
(6.40)
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Inspecting, the definition (6.33) of ξi(x), it is easy to see that it is not continuous function of x,
and thus X(t) is not Feller.

This example indicates one possibility of how the Feller property can be violated by exchange-
able Markov processes: If the transition kernel depends on “non-local exchangeable quantities”,
then the process is not Feller. We now show that this is essentially the only mechanism, how
the Feller property can be violated.

The following definition imposes a very strong “locality” of the distribution of X.

Definition 6.7.2. An exchangeable Markov process X is called consistent if its every restriction X|[n]
to Sn is Markov with respect to its own natural filtration.

Theorem 6.7.1. For a time-homogeneous exchangeable Markov process X, the following are equivalent:

(i) X is consistent and every X|[n] is a Feller process on Sn.

(ii) X is Feller.

Remark 6.7.1. If S is finite, then Sn is finite as well. Every càdlàg Markov process on a finite state
space is Feller. Therefore, in this case, the consistency of X is equivalent to Feller property. This was
proved in the exchangeable random graph case in [58].

6.8 discussion and outlook

limitations. Vertex exchangeability might be a problematic assumption for some applica-
tions:

• All vertices might not be exchangeable.

• Vertex-exchangeability implies that the network is either dense (or empty), a.s. However,
the networks in some applications are known to be sparse.

outlook. To construct theories of IPS on evolving networks, one might use the following
ingredients:

• Combine random graphs and complex networks (e.g., Durrett [81] and van der Hofstad [188])
with stochastic processes in evolving random environments (see, e.g., Andres et al. [8], Athreya
et al. [15], Birkner et al. [30], and Peres et al. [169]).

• Use the stochastic limiting structures for large graphs (see, e.g., Borgs & Chayes [37] and
Crane [56]) to describe the large IPS on evolving networks.

• Encode the limiting and prelimiting structures as stochastic processes on evolving metric
measure spaces. A somewhat related idea is being explored in an analytic context
by Kopfer & Sturm [130].
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open problems:

• Study your favorite finite IPS on your favorite evolving network. See, e.g., Jacob et al.
[117] and Jacob & Mörters [118] for some rare rigorous examples.

– Study (scaling) limits/universality in this context.

– Are exchangeable graph/particle models (scaling) limits of any finite IPS on evolving
networks?

• Characterize Markovian network dynamics of sparse (e.g., Caron & Fox [51], Crane &
Dempsey [59], and Janson [119]) random networks.

• Study adaptive (a.k.a. coevolving) models, i.e., allow for interactions between the particle
states and network evolution, see, e.g., Basu & Sly [22] and Chatterjee et al. [52], for some
rare rigorous analyses.

• Statistical inference, estimation, uncertainty quantification for stochastic processes on
evolving networks. E.g.,

– Infer the network geometry from the behavior of an IPS on it.
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