Übungsblatt 5

Martingalkonvergenzsätze II

Abgabe am 18.11.2014

W-Theorie II @ Universität Duisburg-Essen

Dozent: Prof. Dr. Martin Hutzenthaler

Winter Semester 2014/15

Übungen: Dr. Anton Klimovsky

Aufgabe 5.1 Quadratische Variation des gestoppten Prozesses, 4 Punkte

Sei X ein quadratintegrierbares Martingal mit quadratischen Variationsprozess $\langle X \rangle$ und sei τ eine Stoppzeit. Zeigen Sie: Der gestoppte Prozess X^{τ} hat den quadratischen Variazionsprozess $\langle X^{\tau} \rangle = \langle X \rangle^{\tau} := (\langle X \rangle_{n \wedge \tau})_{n \in \mathbb{N}_0}$.

Aufgabe 5.2 Konvergenz fast überall, 4 Punkte

Sei $f \in L^1(\lambda)$, wobei λ die Einschränkung des Lebesgue-Maßes auf [0,1] bezeichnet. Sei $I_{n,k} = [k2^{-n}, (k+1)2^{-n})$ für $n \in \mathbb{N}$ und $k \in \{0, \dots, 2^n - 1\}$. Definiere $f_n \colon [0,1] \to \mathbb{R}$ durch

$$f_n(x) := \begin{cases} 2^n \int_{I_{n,k}} f d\lambda, & \text{falls } k \text{ so gewählt ist, dass } x \in I_{k,n}, \\ f(1), & \text{falls } x = 1. \end{cases}$$
 (1)

Zeigen Sie: Für λ -fast alle $x \in [0,1]$ gilt $f_n(x) \xrightarrow[n \to \infty]{} f(x)$.

Aufgabe 5.3 Starkes Gesetz der großen Zahlen, 4 Punkte

Seien $(X_n)_{n\in\mathbb{N}}$ unabhängige, quadratisch integrierbare Zufallsvariablen mit

$$\sum_{n=1}^{\infty} \frac{\operatorname{Var}[X_n]}{n^2} < \infty. \tag{2}$$

Zeigen Sie mit Hilfe des Martingalkonvergenzsatzes das starke Gesetz der großen Zahlen für $(X_n)_{n\in\mathbb{N}}$, d.h.

$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \mathbb{E}[X_i]) \xrightarrow[n \to \infty]{\text{f.s.}} 0.$$
(3)

Aufgabe 5.4 F.s. Konvergenz von einem Martingal, 4 Punkte

Sei $p \in [0,1]$ und $X = (X_n)_{n \in \mathbb{N}_0}$ ein stochastischer Prozess mit Werten in [0,1]. Für jedes $n \in \mathbb{N}_0$ gelte: Gegeben X_0, \ldots, X_n ist

$$X_{n+1} = \begin{cases} 1 - p + pX_n, & \text{mit Wahrscheinlichkeit } X_n, \\ pX_n & \text{mit Wahrscheinlichkeit } (1 - X_n). \end{cases}$$
(4)

- (a) Zeigen Sie, dass X ein Martingal ist und fast sicher konvergiert.
- (b) Bestimmen Sie die Verteilung des fast sicheren Grenzwerts $\lim_{n\to\infty} X_n$.